• Title/Summary/Keyword: Compromise coefficients.

Search Result 13, Processing Time 0.028 seconds

Steiner씨 분석법의 이상적합치에 관한 연구

  • Park, Yoㅕng-Chel;Jun, Youn-Sic;Son, Byung-Hwa;Ryu, Young-Kyu
    • The Journal of the Korean dental association
    • /
    • v.20 no.6 s.157
    • /
    • pp.513-524
    • /
    • 1982
  • The purpose of this study was to test the statistical significance of Ideal Acceptable Compromise and determine the range of their use according to the Steiner's analysis. 56 adults male and 62 adults female ranging in age from 18 to 20 years with normal occlusion were studied and analyzed statistically. The results were as follows; 1. The authors obtained the ANB range values and ideal acceptable compromise. 2. Simple correlation coefficients of each variables used in the ideal acceptable compromise were obtained. 3. It is most valid that use the ANB angle as a dependent variable among the five variables. 4. In the multiple regression equations, the rank of significant variables were 1 to NA(angle), I to NA(mm), 1 to NB (mm) in male group, and 1 to NA (angle), 1 to NB (angle), 1 to NA (mm), 1 to NB (mm) in female group when ANB angle was used as a dependent variables.

  • PDF

The Robust Parameter Design of Multiple Characteristics with Multiple Objective and Subjective Attributes (다수의 주관적 요소와 객관적 요소를 고려한 다특성치 강건설계)

  • 조용욱;박명규
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.11a
    • /
    • pp.251-254
    • /
    • 2000
  • The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this study, First, Methodology using SN ratio optimized by univariate technique is proposed and a parameter design procedure to achieve the optimal compromise among several different response variables is developed. Second, to solve the issue on the optimal design for multiple quality characteristics, this study modelled the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of the terms. The model will be used to determine the global optimal design parameters where there exists the conflict among the characteristics, which shows difference in optimal design parameters for the individual characteristics. Third, this paper propose a decision model to incorporates the values assigned by a group of experts on different factors in weighting decision of characteristic. Using this model, SN ratio of taguchi method for each of subjective factors as well as values of weights are used in this comprehensive method for weighting decision of characteristic.

  • PDF

l-STEP GENERALIZED COMPOSITE ESTIMATOR UNDER 3-WAY BALANCED ROTATION DESIGN

  • KIM K. W.;PARK Y. S.;KIM N. Y.
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.3
    • /
    • pp.219-233
    • /
    • 2005
  • The 3-way balanced multi-level rotation design has been discussed (Park Kim and Kim, 2003), where the 3-way balancing is done on interview time, in monthly sample and rotation group and recall time. A greater advantage of 3-way balanced design is accomplished by an estimator. To obtain the advantage, we generalized previous generalized composite estimator (GCE). We call this as l-step GCE. The variance of the l-step GCE's of various characteristics of interest are presented. Also, we provide the coefficients which minimize the variance of the l-step GCE. Minimizing a weighted sum of variances of all concerned estimators of interest, we drive one set of the compromise coefficient of l-step GCE's to preserve additivity of estimates.

Aerodynamics of a wing section along an entry path in Mars atmosphere

  • Zuppardi, Gennaro;Mongelluzzo, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2021
  • The increasing interest in the exploration of Mars stimulated the authors to study aerodynamic problems linked to space vehicles. The aim of this paper is to evaluate the aerodynamic effects of a flapped wing in collaborating with parachutes and retro-rockets to reduce velocity and with thrusters to control the spacecraft attitude. 3-D computations on a preliminary configuration of a blunt-cylinder, provided with flapped fins, quantified the beneficial influence of the fins. The present paper is focused on Aerodynamics of a wing section (NACA-0010) provided with a trailing edge flap. The influence of the flap deflection was evaluated by the increments of aerodynamic force and leading edge pitching moment coefficients with respect to the coefficients in clean configuration. The study was carried out by means of two Direct Simulation Monte Carlo (DSMC) codes (DS2V/3V solving 2-D/3-D flow fields, respectively). A DSMC code is indispensable to simulate complex flow fields on a wing generated by Shock Wave-Shock Wave Interaction (SWSWI) due to the flap deflection. The flap angle has to be a compromise between the aerodynamic effectiveness and the increases of aerodynamic load and heat flux on the wing section lower surface.

Lubrication Analysis of Mechanical Seal using Galerkin Finite Element Method (캘러킨 유한요소법을 이용한 미케니컬 페이스 시일의 윤활성능해석)

  • 최병렬;이안성;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.197-202
    • /
    • 1999
  • A mechanical face seal is a tribe-element intended to control the leakage of working fluid at the interface of a rotating shaft and its housing. The leakage of working fluid decreases as the seal surfaces get closer each other. But a very small seal clearance results in a drastic reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals the compromise between low leakage and acceptable life is important and presents a difficult design problem. And the gap geometry of seal clearance affects seal performance very much and becomes an important design variable. In this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed using the Galerkin Finite Element Method, which can be readily applied to various seal geometries. The film pressures of the sealing dam are analyzed, including the effects of the seal face coning and tilt. Then, opening forces, restoring moments, leakages, and dynamic coefficients are calculated.

  • PDF

A Lubrication Design Optimization of Mechanical Face Seal (미케니컬 페이스 실의 유활 최적설계)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2989-2994
    • /
    • 2000
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface of a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance between mating seal faces gets smaller. But the very small clearance may result in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, ant it present a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby is optimization is one of the main design consideration. in this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries, to give lubrication performances, such as opening force, restoring moment, leakage, and axial and angular stiffness coefficients. Then, to improve the seal performance an optimization is performed, considering various design variables simultaneously. For the tested case the optimization ha successfully resulted in the optimal design values of outer and inner seal radii, coning, seal clearance, and balance radius while satisfying all the operation subjected constraints and design variable side-constraints, and improvements of axial and angular stiffness coefficients by 16.8% and 2.4% respectively and reduction of leakage by 38.4% have been achieved.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

Multi-Level Rotation Sampling Designs and the Variances of Extended Generalized Composite Estimators

  • Park, You-Sung;Park, Jai-Won;Kim, Kee-Whan
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2002.11a
    • /
    • pp.255-274
    • /
    • 2002
  • We classify rotation sampling designs into two classes. The first class replaces sample units within the same rotation group while the second class replaces sample units between different rotation groups. The first class is specified by the three-way balanced design which is a multi-level version of previous balanced designs. We introduce an extended generalized composite estimator (EGCE) and derive its variance and mean squared error for each of the two classes of design, cooperating two types of correlations and three types of biases. Unbiased estimators are derived for difference between interview time biases, between recall time biases, and between rotation group biases. Using the variance and mean squared error, since any rotation design belongs to one of the two classes and the EGCE is a most general estimator for rotation design, we evaluate the efficiency of EGCE to simple weighted estimator and the effects of levels, design gaps, and rotation patterns on variance and mean squared error.

  • PDF

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.