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I-STEP GENERALIZED COMPOSITE ESTIMATOR
UNDER 3-WAY BALANCED ROTATION DESIGNT

K. W. Kim! Y. S. PArRk? AND N. Y. Kim?

ABSTRACT

The 3-way balanced multi-level rotation design has been discussed (Park
Kim and Kim, 2003), where the 3-way balancing is done on interview time,
in monthly sample and rotation group and recall time. A greater advantage
of 3-way balanced design is accomplished by an estimator. To obtain the
advantage, we generalized previous generalized composite estimator (GCE).
We call this as [-step GCE. The variance of the l-step GCE’s of various
characteristics of interest are presented. Also, we provide the coefficients
which minimize the variance of the I-step GCE. Minimizing a weighted sum
of vartances of all concerned estimators of interest, we drive one set of the
compromise coeflicient of I-step GCE’s to preserve additivity of estimates.

AMS 2000 subject classifications. Prinary 62G08; Secondary 62G20.
Keywords. Rotation sampling design, Multi-level rotation design, General-
ized composite estimator, Variance, Optimal coefficients, Efficiency.

1. INTRODUCTION

A rotation sampling design has been used to estimate the monthly level or
changes efliciently and to reduce the respondents burden. Its efficiency arises from
correlations between measurements observed at several survey months. Rotation
sampling designs are classified into one-level and multi-level rotation sampling
designs according to their reported number of months of information at each
survey month. The term “level” of a design indicates the number of months for
which information is solicited in one interview. In an one-level rotation design,
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the respondents report only the information of the interview month while the in-
formation of the interview month as well as a certain number of previous months
in a multi-level rotation design. It is obvious that the multi-level rotation sam-
pling design may take less cost and response burden than the one-level rotation
design. According to this classification, the the U.S. Current Population Survey
(CPS), the Canadian Labor Force Survey (CLFS) and Australian Labor Force
Survey (ALFS) belong to an one level rotation sampling design and the U.S.
Monthly Retail Trade Survey (MRTS) and the Survey of Income and Program
Participation (SIPP) belong to a multi-level rotation design.

The most recent work about one-level rotation sampling design was done by
Park, Kim and Choi (2001). They introduced the 2-way balanced semi one-
level rotation sampling schemes, called as r* — r;n_l. Their design is balanced
on interview time horizontally and vertically in any survey month, and contains
most existing one-level designs such as the CPS, CLFS and ALF'S as special cases.

Cantwell and Caldwell (1998) dealt with the two-level MRTS and compared
it with a fixed-panel design. They examined the issues of sampling variability,
revisions, panel imbalance, response bias, cost, respondent burden and data qual-
ity. They demonstrated biases from unbalanced rotation groups and recall times,
and showed that those biases overwhelm the mean squared error.

There are two ways to overcome the bias problems. The first method is to
develop new design and the second is to contrive new estimation method to min-
imize effects of biases. The new design that minimize or reduce the effects of
biases is introduced already by Park Kim and Kim (2003) called as 3-way bal-
anced multi-level design call as r*(1) — 3" " design. This design is accomplished
not only on interview time in monthly sample and rotation group but also on
recall time as well. The second method is our main point in this paper. The re-
mainder of this paper is divided into 4 sections. In Section 2, we briefly introduce
the r7*(I) —r5*~! design. Newly extended generalized composite estimator (I-step
GCE) is suggested in Section 3. In Section 4, We also derive the variance of the
l-step GCE. To preserve the consistency in total, we derive one set of compro-
mised coefficients minimizing a weighted sum of variances of l-step GCE’s for all
characteristics of interest. In Section 5, we compare the efficiency of I-step GCE
relative to simple estimator.
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2. 3-WAY BALANCED r*(l) — r5*~! DESIGN

The multi-level rotation system can be expressed as [-level rotation system.
In I-level rotation design, each sample unit reports the information for the current
month as well as for the | — 1 previous months. When the sample unit returns to
the sample for every I[th month, it again provides [ months information. One-level
it — 'rg‘_l rotation system is generalized to “multi-level” rotation system : once
a sample unit is selected from each rotation group, the sample unit returns to
the sample for every [-th month until its r;-th interview. Then no information is
obtained from the sample unit for the next r, months; this procedure is repeated
until this sample unit returns to the sample for its final mr;-th interview. This
rotation system is called as r{*(l) — r5*~! for the l-level design. Under the some
conditions, r*(I) — 73"~ design is balanced in 3-ways by interview time, by
rotation group and by recall time. Rotation designs do not satisfy 3-way balancing
even if it can be expressed as rT*(1)—rJ*~!. The necessary and sufficient condition

to satisfy 3-way balancing in r7*(I) — 77"} is as following (see Park Kim and Kim,

2003).

THEOREM 2.1. Suppose that the r*(l) — ri* ™' design is balanced in 3 ways.
For each giveni, i = 0,1,--- ,r1—1, there is an unique integer m}, 1 < m} < mry
satisfying

ro1
modpy, {m;‘ it (mI-1)(1-1)+ [mzrl ]7'2} = (2.1)
where [-] is the integer operator.

This 3-ways balancing ensures that all rotation groups are included in the monthly
sample at any survey month and the rotation pattern of a sample unit depends
only on its interview time regardless of its rotation group and recall time.

The U.S. CEX uses 5!(3) — 0° design which satisfies all properties of 3-way
balancing. We illustrate this design in Figure 2.1. In the 5!(3) — 0° design, a
sample unit is in the sample every third month for a total 5 times. The notation
(o, g) in Figure 2.1 are the symbols for the ath unit in the gth group and wu; is
for the ath unit interviewed in the i-th time.

In spite of the two different times of the observation, u4 in month ¢ and us
in month ¢ + 3 are the same sample unit since both are indexed by (1, 4); but ug
in month ¢ and u4 in month t 4 1 are different units, (1,4) and (1,5) although
they are interviewed for the same time in two different months. The symbols “”

[{% 4]

and “i” above the sample unit u; denote the same sample unit which provides
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FIGURE 2.1 The Three-way balanced 5'(3) — 0° design

a 1 2 3 4 5 6
g 1 2 3 4 5/ 1 2 3 4 5/ 1 2 3 4 5|1 2 3 4 5[ 1 2 3 4 5|123
t us nooug nooug | woougp 1 0wy u
t+1 us 1 0 ugl noug | ul ug nouy "

M t+2 ug  t | ug noouz fooug 0wl o I

O t43 ug nooug [T 7% woug wl ouy il

N t+4 ug| 1 noug Wl uz nooug uoouy "

T t+5 ug oug | uooug uoougl nwoouy "

H t+6 ug ot 0 ugl woug 10 ou| ug noug 1t
t+7 us | | ug nwooug nooug ) uoougl o n
t+8 ug moug 0 onougl o vow w0 onf w0 ow
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t410 ug nooug 1 wooug o (7S] uouy t
t+11 ug o ougl 1 noug | | wy wouwy 1 fon
t+1 us t u| ug tooug ¢ ouz o uoupf vow

the information of the previous 2 months. The recall time of the unit u; is 0 at
the survey month, 1 at “” for one month before the survey month and 2 at “”
for two months before the survey month.

3. [-sTEP GENERALIZED COMPOSITE ESTIMATOR

Some sample units are used repeatedly for a pre-determined number of months
according to their rotation pattern. Efficient estimators have been suggested
to use this longitudinal information from the same sample units. The current
composite estimator by Rao and Graham (1964), the A-K composite and the
generalized composite estimators by Breau and Ernst (1983) are such estimators.
Among them, we consider the generalized composite estimator (GCE) since the
GCE contains all previous composite estimators as special cases. Let Tt; be a
simple estimator for a characteristic from the sample unit interviewed for the i-th
time at month ¢. Then the GCE at month t is defined as

M M
Y= Z ;T — W Z biTi—1,i +wyt—1 (3.1)
i=1 i=1 .

where M is the number of rotation groups, 0 < w < 1 and Zfil a; = Zfil b; = 1.

By (3.1), the GCE is a linear combination of the current and all previous
information. Since there are multiple z; ;’s by recall times in a multi-level rotation
design, it is natural that the multi-level version of (3.1) is

M -1 _ M -1 .
Ye = Z Z “iﬂ’g,]i) —w Z Z biﬂg,]z') + wyt-1,
i=1 j=0 i=1 j=0 (3.2)

0Sw<l, 33 ay =3 3 by=1
i g i j
o

where zy; is a simple estimator from the sample unit with the ith interview time
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and the ]th recall time at month ¢. The :vg 1) will be obtained at month ¢ 4+ j,
j=0,---,0—1. This implies that g in (3.2) (the GCE of month t) can not be
calculated until the future month ¢+ — 1. To eliminate this discrepancy between
the survey month and the month the GCE is obtained, we propose the following

[-step generalized composite estimators. For k =0, --- ,[ -1
M k+1
(k) Z Z a(k) xf(b]z) w Z Z bz] xgj)l % + wyik)l (33)
i=1 j=0 i=1 j=0
where a:gj) w are the same as in (3.2), 30, Z] 00 gc) M Zkf(l) b,gc =1 for

each k=0, - l—lwhereb(l 1)_Of0rallz—-1 , M.

Therefore, we have I GCE’s for the month ¢ : ( ) is obtained at the survey
month ¢, and updated by y( ) at one month later the updated yt(l) is again
updated by y§ ) at month ¢+2 and so on until we have y(l Y Which is nothing but
(3.2). Therefore y( ) in (3.3) uses all possible information of month ¢ obtained
for £ + 1 months from month ¢ to month ¢t + & and can be interpreted as an
intermediate estimator of a characteristic at month ¢ finally to have y(l_l).

t
4. VARIANCES OF [-STEP COMPOSITE ESTIMATORS IN 77*(]) — 3"~}
DEsIGN

In this section, we derive variances of I-step composite estimators for 4 types
of characteristics in the 3-way balanced design: the current level, level change
over a certain length of months such as month-to-month change and year-to-
year change, aggregate levels and change such as the year sum and change of

the quarter sum. For notation simplicity, let a(j) = (a&’;),a;’;), e ,ag\lfI)J)’ and
ap = (2'(0),a'(1), -+ ,a'(k), 0, ,)'. Similarly, b(j) =(b55, 657, -+, b{i)) and
by = (b'(O),b’(l),--- ,b'(k),b'(k + 1)), Finally, x:(j) = (a;g]l), . ,xgjg/f)' and
X x=(x;(0), x}(1), ---, xj(k + 1))’ for each k = 0,1,--- ;1 — 1. Then (3.3) is
written as

y = al Xk —wbp X1k +wysy, k=01, 0~ 1 (4.1)

where a;1 = bj1 =1 and 0 < w < 1. Note that y( ) is the simple estimator
when w = 0 and all a; are same.

The repeated interviews of the same sample units are more likely to be cor-
related and we call this correlation as the first-order correlation (or time cor-
relation). Since sample units in the same rotation group are usually close to
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each other regionally, the sample units in a rotation group are also rather depen-
dent. We call this type of correlation as the second-order correlation (or spatial
correlation). These two types of correlations are incorporated into our variance
estimation. Previous works (Rao and Graham, 1964; Cantwell, 1990; Yansaneh
and Fuller, 1992) ignored the second-order correlation for the calculation of vari-
ances. However, Kumar and Lee (1983) and Park Kim and Choi (2001) showed
that the variance of the GCE is seriously underestimated when the second-order
correlation is ignored even for a small value of the second-order correlation.

The interview and recall times of a sample unit may also have some influence
on its variance. Hence we allow that the variance does not remain the same,
but rather varies over the course of interviewing and recalling sample units. We
assume that there is at least two moments so that E (x(j.)s = py for all 7 =

1,2,---,M and j = 0,1,--- ,l ~1 and Var (a:?z)) = 2 for all ¢ where 02 <

04 << o? ;11 is often assumed to reflect the recall tlme variability.

(J) (4"

The following covariance of z;’/ and z; L y summarizes the above argument.

(02, if ¢'=0,i=14 and j=§
p10ijoy 4 if both are from the same unit.
Cov(&? 44,77 sav31) = < pav0ijoy g if both are from different unit (4.2)

but from the same group.

{ 0 otherwise.

where pyp is the first-order correlation and poy is the second-order correlation
between months ¢ and t +¢'. To accommodate this correlation structure into the
variance of yt(k) in (4.1), we need to identify which two sample units are from
the same rotation group and which two w(] ) and :cg:z, » come from the same unit
based only on interview times and recall tlmes Let L be mry; X mrq with the

(4,7)th element

1 ifi=1, dj=k lori=1I j o= I, _
(L)i; = He=log, and j=kory +1ori =TI, and j = Ir, -1k, @3)
0 otherwise.
where Iy, x, = modm,nl(m;;1 +kory) fork; =1,2,--- ;11 =1, ko =0,1,--- ,m—1,

and we replace Iy, x, = mry if I, , = 0.

This L matrix is another expression of the rotation pattern of the 3-way
balanced design. Define L% = I and L! = L*~1. L. LY matrix identifies that
which two rotation groups surveyed in month ¢ and ¢ +t' are same based only on
interview times.
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As an example, consider 5'(3) — 0° design in Figure 2. The matrix L for this
5'(3) — 0° design is (L);; = 1if (4,5) € {(1,3), (2,4), (3,5), (4,1), (5,2)} and
0, otherwise. Thus (L3);; =1if j=4i+1fori=1,--- ,40ri=5and j =1 and
(L3®);; = 0, otherwise. That is, the rotation group interviewed for the i-th time
with recall time 0 at month ¢ is the same as that interviewed for the (i+1)th time
with recall time 0 at month ¢t + 3 for i = 1,2,--- ,4. Similarly, the two rotation
groups with interview time 5 and recall time 0 at month £, and with interview
time 1 and recall time 0 at month ¢ + 3 are the same.

One can easily see from Figure 2.1, the construction of the 3-way balanced
design, the sample units interviewed at month ¢ + 1 are determined by shifting
one step to the right from the sample units at month ¢. Hence, the overlapped
sample units between months ¢t and ¢ + 1 are the same sample units. This can be
expressed by the forward matrix of (mril + (m — 1)rg) x (mril + (m — 1)r2) Ly
matrix with (Ls);; = 1if j =4+ 1 and 0, otherwise.

Since we only concerns on the overlapped sample units with recall time 0 at
both months ¢t and t+1, let Ag = {i: i = 14+ (n1— 1)+ (ng—1)(r1l+712) for ny =
1,2,---,ry and ng = 1,2,--- ;m}. Then we remove all rows and columns not in
Ap. We denote the remaining Ls matrix by L; whose size is mr; x mr;. In this
L; matrix, the ¢th row indicates the sample unit interviewed for the ith time with
recall time O at month ¢ and the jth column indicate the sample unit interviewed
for the jth time with recall time 0 at month ¢ + 1.

This L; matrix is now used to identify that which two sample units at two
months ¢ and ¢ + 1 are same. If (L;);; = 1 then the sample unit with the ith
interview time and 0 recall time at month ¢ and the unit with the jth interview
time and O recall time at month ¢ + 1 are the same unit while if (L;);; = 0 they
are different. In general, define L to be the mr; x mr; matrix after removing
the rows and columns from L! in which the rows and columns are not in Ag.
Here L} = L,- L}™! with L = I. If (LY);; = 1, two sample units at month ¢ and
t + ¢’ with recall time 0 and respective interview times ¢ and j are same but if
(Lﬁ’)ij = 0 the corresponding two sample units are different.

Finally, define another mr; x mry matrix L} = L* — L. Since L matrix is
used for identification of the same rotation group and L is used for identification
of the same sample unit, L} can be interpreted as follows. If (Lg)ij = 1, two
sample units at month ¢ and ¢ + ¢’ with recall time 0 and respective interview
times 7 and j are different but from the same rotation group. Therefore Ltll and
Lg matrices completely identify two sample units at respective survey months ¢
and t + t' only by their interview times : if (L});; = 1 and (L%)ij = 0 then two
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sample units with respective interview times 7 and j at months ¢t and t 4+t are the
same unit, and they are different but from the same rotation group if (Ltll)ij =0
and (Lg)lj = 1.

In 5!(3)—0° design, for example, Ag = {1,4,7,10,13}. Thus we have (L3);; =
l1ifj=i+1fori=1,23,4 and (L});; = 0 otherwise. Since L§ = L3 — L3, we
have (L3);; = 1 if (i = 5,7 = 1). Using these L1 and Ly matrices, first we show

LeMMA 4.1. Suppose that a multi-level rotation design is balanced in 3-ways
with r9 = kym for ky = 0,1,---. Then under the covariance structure given in
(4.2), we have '

Cov (Xt(k), Xt(i)t,> =Vok t'=0,1,--
in which the mry x mry (i + 1,5 + 1)th block matriz of Vi i is
Cov(x:(1), Xe4¢:(J)) = Qo iy = Plt'AiLil_H-jAj + Pzt'AiLg_HjAj
where A; = diag(o1j, 095, <+, opmj ) fori,j=0,1,--- ,k+1,k=0,1,--- | I-1.

Proor. Fori,j =0,1,---,1—1 and ky,ky = 1,2,--- ,mr;, the covariance
structure given in (4.2) gives Cov (:vgf,)cl,acgi)t,’kz) = P10k, ,i0k, ; if the two are
from the same sample unit. Since xgl,)“ and :L'Ei)t,’ k, are reported by the respective
two sample units at months t+1 and ¢+t'+7 by the definition of the l-level rotation
(1) ()

system, the identification matrix of L; between z, % and ;. k, 1S the same as

that between "Eggt)i,kl and xg(j_)t, +jky- BY the construction of Ly, (Lt1+t +J _t‘i)kl,m
= (L§’+j _i) k1,k; = 1 implies that a:EE?L k, and xﬁ?r)t, +i.k, COme from the same sample

: : (4) ()
unit and, in turn, z;; and z;/,

k, AT€ also the measurements from the same
b 1
sample unit. Therefore, we have

Cov (x4(4), Xee () = pror AL 70 (4.4)

whenever any pair of x;(¢) and x4 (j) are from the same sample unit.

Similarly, Cov(a:g,)cl,zg)t,’kl,) = P2y Ok, ,i0ks,j if (Lt2'+j "Y1k, = 1. This gives

Cov (x4(4), Xy (7)) = par ALE H170A; (4.5)

whenever any pair of x;(¢) and x;,4(j) are from different sample units but from
the same rotation group. Combining (4.4) and (4.5), we have the desired result.
O

Define By n(k) = 332, W™V 4 j—nk for to > n. Then we now obtain the

variance of yt(k) .
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THEOREM 4.1. Under the same assumptions given in Lemma 4.1, the vari-
ance ofyt(k) fork=0,1,---,1—11s

(1 - wWVar(y®) =aj, (Vo + 2wB10(k))ak + w?b}(Vox + 2wB1,0(k))bx
— 2wb§c(B1,0(k) + Bg,l(k))ak.

)

PROOF. Recursively solving (4.1), we have yt(k) = Y720 (wjacht(Eto_j -

wjﬂb;c Xt—to—j_l). By Lemma 4.1, for n < tp,
Cov(y,,, w2 X5))

o0 o
k k j k k
= Z a}c(}'ov(Xt(_)to_j,Xt(_)na;c - 2:w”lJ”‘bjcCov(Xt(_)to_]._1,Xt(_)n)a;c

=0 j=0
) o0
I j ! 1 1
= ag Zw]+n‘/t(l+j—n,kak - bk Zw]+n+ ‘/t()+j+l—n,kak
_ o pk) 1 (k)
= akBtm.nak - (UkatO_I_l’nak. (46)

Similarly, for n < to

Cov(y®, , Wbl X®)) = 8} B by —wb BE) | by (4.7)

t—n to,n

Cov (Xt(k), Xt(i)t,) depends only on the time lag ¢’ by Lemma 4.1, we obtain
that

(1 — w)Vary®) =a, Var(X*)ay + Wb} Var(X ¥, )by,
— 2wb],Cov(X¥), XF)ay,
:2wC’ov(y§’i)l, a;CXt(k)) - wCov(ygf)l , wb}cXt(f)l).

The two equations (4.6) and (4.7) produce

(1 — w2 Var(y®) = al(Vox + 2wBi o(k))ax + w?bl (Vo x + 2wB1,0(k))by
— 2wbj(V1,k + wBao(k) + By (k))ay.

Finally, since Vj x + wB3 (k) = B1,0(k), we have the results. O

For each k = 0,1,--- ,l — 1 and tg,t' > 0, we are often interested in vari-
ances for the change of yt(k) - yt(f)to, the aggregate of the yt(k) expressed by
S (k) = :9;01 yt(li)t,, and the difference of two aggregates expressed by St (k) —

SP, (ky=3"t ! yff)z — bt yyi)tl_i for t; > to. For variances of these three es-

timators, let P = (1 —-wz)_l(‘/o,k +2wB170(k)), Py, = —2(1 —w2)—1w(31,0(k) +
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11(k)) and P3; = w?Py; which are from Var(yt) given in Theorem 4.1. Fur-
ther let Plk(t*) = 2(1 - wt* )Plk: - 22 Bt* (k), ng(t*) = 2(1 - wt*)ng +
2wy 5 (th_l,n(k) +B'*’n+1(k)) and ng(t*) = w? Py (¢*) for t* > 1. Then the
following variances are obtained.

THEOREM 4.2. Under the same conditions in Theorem 4.1,

Var(y® — y,)) = al,Pix(to)ar + b} Pax(to)ax + bl Pak(to)br,
to—1

Var(Sp°(k)) = aj(toPu — 3 _ (t —t")Pre(t"))ax
t*=1
to—1
'H:);c (tonk — z (t - t*)ng (t*))ak
t*=1
to—1
+bj(toPak — Y (t —t*) P (t*)) by
t*=1
and
Var(St (k) — Si°,, (k)
to—1 to—1
=a (Y (to—It")Pu(t1 —t) =2 ) (to — ) Pi(t"))ax
t*=—to+1 t*=1
to—1 top—1
b (> (to— [ Pak(ts —t*) =2 (to — t*) Pk (t*)) 2k
t*=—tg+1 t*=1
to—1 to—1
+bL (N (to— [t Paklty —t7) 2 ) (to — t*) Pak (")) bx
t*=—to+1 tr=1

PRrROOF. Since yt =Yl (w akX(k) "Hb;cXt(f)n_l) +wt°Va7‘('yt(k)), we
have

k k k k k
Var(y® —y®,)) = 2Var(y®) - 2Cov(y®,,, 4
to—1
=2(1 - w®)Var(y®) - 2 Z Cov(y* to,w"a,’,cX(k)
n=0

to—1
. k
+2 Z Cov ?/E )to’wn+1b/ t n 1)-

Thus we have the first claim by (4.6) and (4.7).
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Observe that

to—1 to—2 to—1
k) (K
Var(S{(k)) = Z Var(yiﬁ)t,) +2 Z Z Cov yi )Z,yt( ),,)
/=0 =0 i/ =it+1
, -
ES ® ®
= toVar(y, ') +2 Z tYCou(y, ', Yp_y)-
=1

Now, since C'ov(yt( ,y§ )t,) = Var( ) —(1/2)Var(y, (k) yt(ﬁ)t,), we have the
second claim. _

By definition of S{°(k) — Si°, (k) for t1 > to, Var(SP (k) — St (k)) is ex-
pressed as

tp—2 to—1

to—1
k k)
> (ver(y 9) + Var(®, 1)+2[Z > (couw®, u,)
i=0 i=0 i/ =i+1
to—1¢p—1 *)
+C'ov(yt )t1 i yt :1 i ) Z ZCOU Yei yt t1—1 )]
=0 ¥'=0 (48)
k = k) (R)
= 2toVar(y{ ))+2[Z(to—i)(2cw( 37
=1
k) (k k) (k k) (k
— Couly™, y¥, 1) — Covy™ ¥, L)) — t1Cou(y™, o L)]
After a little algebraic calculation using
Covu®, u¥y) = Var(y®™) - svar® —4,)
(4.8) is
= k k = k k
Z (to — [t*)Varly ( )—y§ )t1+t -2 Z Var(yt( ) y§ )t‘)
tr=—to+1 tr=1
This completes the proof. a

5. OPTIMAL COEFFICIENTS OF [-STEP GCE

We have the four types of I-step GCE’s : ygk), yg ) ygkto, Sio(k) and Sf° (k) —
St ¢, (k) for to > 1, 1 > to and each k =0,1,--- ,I — 1. Defining specific values
of to and t;, we assume there are H l-step GCE’s of interest. Denote them by
zikn for h =1,2,--- , H. Note that z;p, and zyp, b # b’ can be the same type of
l-step GCE’s when they are from different characteristics. For example, yyc) for

Labor Force is the same notation as yt(k) for Unemployed.
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To have the consistency in total among estimates or to preserve additivity
of estimates, we set the object function Ok, k = 0,1,--- ;1 — 1 for variance :
Ok=Zf=1 nVar(zin) — M1(Yar — 1) — Aa(1'bg, — 1) where \'s are Lagrange
multipliers and §;’s are the weights which represent the relative importance of
the corresponding estimators. For example, H l-step GCE’s are equally valuable,
then &, = 1/H for all h. By a suitable choice of z;’s, we obtain the one set of
optimal coefficients by minimizing the object function O for each k = 0,1,--- ,1—

1. Then we can use it commonly for different estimators and characteristics.
By Theorems 4.1 and 4.2 for the 3-way balanced r*({)~r5* ! design, Var(zs)
can be expressed as

V(M‘(Ztkh) = a}cC’Ikhak -+ b;cCgkhak + b;cC3khbk- (51)

For example, when zy4; = yék), Cikn = Py for i = 1,2,3. Note that in (5.1),
the last M = mr; elements of a; for k = 0,1,--- ,] — 1 are zero and the last
M elements of b;_; are also zero by the construction of the l-step GCE. To
eliminate these zero’s constraint on a; and b;_;, we introduce the matrix Iyg
which is a (k + 2)mry X (k + 2)mr; identity matrix except the last mr; diagonal
elements being zero where £ = 0,1,--- ;1 — 1. Using this Ixg matrix, define
Clin = Ikoclkhféo, Cgkh = CQkhIko and C3kh = Csp for k =0,1,---,1 - 2. For
k=101-1, let C2l 1p =1 IOCZk:hIl 1,0 and C3l 1,k =1I_ 1003[ lhIl 1,0° Then
Var(ztkh) given in (5.1) is rewritten as

VGT(Ztkh) = a*;chkha*k + b*;ccgkha*k + b*;cc*;gkhb*k (52)

where a*; = Ixpay for all k = 0,1,---,1—1, b*, = b for k =0,1,--- ,[ — 2,
b*_1 = Ixob;_;.
By (5.2), the objective function Oy is O;=Zf=1 0nVar(zyn) — M(Va*, —1)
— A2(1'b*; — 1) where 1 is a vector of ones. By letting C; = ZhH 100Cns
we optimize this objective function O} and obtain the following estimates of the
optimal coefficients in the 3-way balanced r7*(l) —r5* ! design. Hereafter, we call
these optimal coeflicients as compromise coefficients.

LEMMA 5.1. Suppose that a multi-level rotation design is balanced in 3-ways.
For given weights p, h = 1,2,--- | H, the compromise coefficients of a*; and b*j,
minimizing the weighted variance Zh— 0nVar(zuyn) are given by

o N —1
atk\ _ Cik | Coi — adk(CTR)TIC5 <011k>
b*y Csi — caJe(C35) 71 G, Cik csli

where i} = Ciy + G, G = i+ Ciy 1 = 14(C0) ™ Ly 0 = 14(C3) L
and Ji = 1,1} where 1 has appropriate size depending on k.
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PROOF. Derivatives of the object function O with respect to a*k, b*r, A1
and Aq yield

0% ’
—E = (CH)a" + Cob"x — Ml =0,
da*y,
8 *

O*k = C;ka*k + (C;,:)b*k — Al =0,
Ob*y

ao;, 00y, ,

=1a*L—-1= =1.b*,—1=0. 5.3

This gives
M= 1+ 1401 7IC5b%) and g =3t (14 14(C50) 71 Cha’ ).

Substituting these A; and g into (5.3), we have the desired a*j and b*j for
k=01, ,1—1. ' 0

6. NUMERICAL EXAMPLES

To illustrate the efficiency of i-step GCEs, we use simple estimators as compet-
itive ones. Because, in practical sense, the simple estimators are used to estimate
population characteristics in multi-level rotation sampling design, we calculate
the efficiency of I-step GCE’s relative to simple estimators under 5(3) — 0° de-
sign of CEX.

Through out this section, we use two types of variance. The first one is
constant, Var(:vg’ji)) = 100 and the second one increases as recall time j increases,
Var (xEJZ)) = (140.35)2100. Weaker correlation is expected when time lag is longer
and the second-order correlation is usually smaller than the first order correlation.
Thus, we assume py; = p! for the first-order correlation and pgt = pgpﬁ for the
second-order correlation. To calculate the variance of I-step GCE’s, we use the
compromised coefficients minimizing the variance of 0.1yt(j ) 0.1(y§j )~ yff)l) +
0.55%2(j)+0.3(§:2(j) —?ﬁn(j)) for l-step GCEs since yearly mean (i.e., 3:2(3'))
is most important and yearly mean change is next in multi-level rotation design.

Table 6.1 compares I-step GCEs with simple estimators using the CEX design
under pi; = 0.4,0.6!,0.8 and por = 0.0,0.3p1;,0.6p1;. The values in this table
are the variance of I-step GCE divided by variance of the corresponding simple
estimator. When the variance of xgi) is constant (i.e., crjz- = 100), then I-step GCE
is slightly better than simple estimator. However, when UJ? is increases as recall
time j increase ( i.e., 07 = (1+0.35)?100), I-step GCE is better than simple esti-
mator. In particular, I-step GCE is much better than simple estimator for yearly
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TABLE 6.1 Relative efficiency

common variance increasing variance

pr_pa levely) ye yi—ger S SP-SE, g me—wmer 3P 551,

0 1.000 1.000 0.999 0.999 1.000 1.000 0.999 0.999
04 0.0 1 0.967 0.920 1.050 1.048 0.936 0.898 1.003 1.001
2 0.990 0.984 1.000 1.000 0.947  0.943 0.951 0.950
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
04 03 1 0974 0.934 1.037 1.035 0.941 0.911 0.986 0.985
2 0.993 0.989 1.001 1.000 0.947 0.950 0.941 0.942
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
04 06 1 0.980 0.946 1.027 1.025 0.945 0.922 0.973 0.972
2 0.996 0.992 1.000 1.000 0.944 0.954 0.929 0.930
0 0.999 1.000 0.995 0.994 0.999 1.000 0.995 0.994
06 0.0 1 0.916 0.778 1.063 1.060 0.867 0.752 0.977 0.978
2 0.971 0.952 0.993 0.988 0.912 0.905 0.913 0.912
0 0.999 1.000 0.997 0.997 0.999 1.000 0.997 0.997
06 03 1 0.941 0.822 1.037 1.036 0.885 0.794 0.946 0.948
2 0.984 0.971 0.997 0.994 0.911 0.931 0.883 0.887
0 0.999 1.000 0.999 0.998 0.999 1.000 0.999 0.998
0.6 0.6 1 0.960 0.865 1.023 1.022 0.896 0.834 0.921 0.923
2 0.990  0.983 0.998 0.996 0.895 0945  0.838 0.847
0 0.990 1.001 0.968 0.944 0.990 1.001 0.968 0.944
08 00 1 0.823 0.512 1.044 1.045 0.745 0.489 0.906 0.910
2 0.915 0.858 0.964 0.918 0.800 0.810 0.784 0.775
0 0.994 1.001 0.985 0.977 0.994 - 1.001 0.985 0.977
0.8 03 1 0.891 0.597 1.021 1.023 0.782 0.571 0.836 0.847
2 0.959 0.922 0.985 0.962 0.775 0.903 0.687 0.714
0 0.996 1.001 0.993 0.990 0.996 1.001 0.993 0.990
0.8 06 1 0.938 0.699 1.010 1.011 0.775 0.670 0.737 0.767
2 0.979 0.958 0.993 0.981 0.703 0.964 0.549 0.606

mean and the relative efficiency of l-step GCE is greater in final estimator (for
example, _512 (2)) than in preliminary estimators (for example, 3%2 (), =0,1).
This tables also shows that the effects of the first and the second-order corre-
lations. For each fixed first-order correlation, variance of all 4 characteristics of
final level increase as the second-order correlation increases under the common
variance. Hence ignorance of the second-order correlation results in underesti-
mation of variance as indicated in Park, Kim and Choi (2001). However, under
the increasing variance, relative efficiency reveals completely reverse phenomena
except monthly change. Since increasing variance may include effect of recall
time bias, this shows that [-step GCE is effective estimator for 3-way balanced
(1) — 3! design.

A generalized composite estimator (GCE) was introduced and improved by
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many researchers. But the GCE has a critical deficiency to apply in a 3-way
balanced multi-level rotation design since it can not be calculated, timing with
a survey month. To overcome this problem, we derived the general variance
formulae of the l-step GCE in the 3-way balanced r7*(l) — 73"~ ' design when the
first-order and second-order correlations are presented.

As discussed in Cantwell and Caldwell (1998) and Park, Kim and Choi (2001),
there should be biases from different interview times, different rotation groups and
different recall times at each survey month in a multi-level rotation design. Since
previous works showed that the biases overwhelms the variance of an estimator in
a rotation sampling, the derivation of MSE of the I-step GCE is one of our future
work. Since the two correlations depends on the rotation pattern, we need to
compare the design efficiency for some selected multi-level rotation designs and
to investigate the effect of the second-order correlation on the variance and MSE
of the [-step GCE. These are also a part of our future work.
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