• Title/Summary/Keyword: Compressor variable speed control

Search Result 45, Processing Time 0.027 seconds

Practical Control Scheme of the Variable Speed Refrigeration System

  • Agung, Bakhtiar;Fatkhur, Rokhman;Kim, Hong-Sik;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.199-203
    • /
    • 2011
  • With the improvement of standard of manufacturing process, oil cooling unit for manufacturing machine has been developed. A control system must be designed in order to keep oil temperature of the machine within a very restricted range and also to reduce energy consumption. In order to get the low deviation of the controlled temperature and the low efficiency, the on/off control scheme is gradually being replaced by a variable speed refrigeration system (VSRS) with an inverter driven compressor over recent decades. This paper gives the flowchart to control the compressor speed and also the electronic expansion valve (EEV) aperture in oil cooling unit refrigeration system using R22 as the refrigerant. This control scheme has already tested in experiment apparatus with room temperature condition constant at $25^{\circ}C$ and variable load condition at 4kW, 6kW, 7kW, 8kW and 10kW.

  • PDF

A Study on a Precision Temperature Control for Oil cooler using ON/OFF Control Method (ON/OFF 제어방식 오일쿨러의 정밀온도 제어에 관한 연구)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the working speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a oil cooler to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the oil cooler system. In this paper, the compressor's speed are controlled to keep reference value of temperature at oil outlet. The precision processing of a machine tool is required for an oil cooler guaranteeing ${\pm}0.1^{\circ}C$ temperature control. But the oil cooler with precision temperature control is expensive. Therefore in this paper, instead of a on/off(relay) control method, a PID and phase angle electric power control method is proposed for the precision control of an oil cooler. The proposed controller is implemented and tested at the temperature of $23^{\circ}C$, $24^{\circ}C$ and $25^{\circ}C$.

Comparison of System Performances of Hot-gas Bypass and Compressor Variable Speed Control of Water Coolers for Machine Tools (핫가스 바이패스 및 압축기 가변속 제어에 의한 공작기계용 수냉각기의 성능 비교)

  • Jeong, Seok-Kwon;Lee, Dan-Bi;Yoon, Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a cooler system to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the water cooler system. In this paper, comparisons of system performances according to the control schemes in a cooler for machine tools were conducted in detail. Each proportional-integral feedback controller for the two different control systems is designed. The system performances, especially the temperature control accuracy and coefficient of performance which is a criterion of energy saving, were mainly analyzed through various experiments using 1RT water cooler system with different two types of control scheme. These evaluations will provide useful information to choose suitable water cooler system for the engineers who design controllers of the cooler system for machine tools.

An experimental study on the control properties of variable compressors for automotive air-conditioning system (자동차 에어컨용 가변압축기의 제어 특성에 관한 실험적 고찰)

  • Kim, Min Jun;Lee, Geon Ho;Park, Ik Seo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.691-696
    • /
    • 2004
  • Recently, it is required that the automotive air conditioning system must keep the cabin temperature comfortable in spite of engine speed, and Improve the fuel consumption during all the seasons. To satisfy these requirements, the variable displacement swash plate type compressor with control pressure valve is developed. In this study, the effects of two type valves, suction pressure control valve and differential pressure control valve, on the performance of swash plate type compressor has been investigated experimentally.

  • PDF

Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic (퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 김세영;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

An Empirical Model for Decoupling Control of a Variable Speed Refrigeration System (가변속 냉동시스템의 비간섭제어를 위한 실험적 모델)

  • Hua, Li;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • This paper deals with an empirical model for decoupling control to control the refrigeration system effectively. The conventional control schemes of the system are mainly focused on representative two control methods, superheat control and capacity control. The capacity control is basically conducted to respond partial loading conditions on the purpose of energy saving. The superheat control is mainly carried out to maintain maximum coefficient of performance (COP). In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. The capacity and superheat can not be controlled independently because of interfering loop when the compressor speed and opening angle electronic expansion valve is varied. Therefore, we suggest decoupling model to eliminate the interfering loop at first. Next, each transfer function in decoupling control model is obtained from number of experiments.

  • PDF

A Study on the Instabilities of the Centrifugal Compressor with Variable Diffuser (가변 디퓨저를 장착한 원심 압축기 불안정성 연구)

  • Cha, Bong-Jun;Im, Byeong-Jun;Yang, Su-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1123-1131
    • /
    • 2002
  • An experimental study on the performance and instability development characteristics of a centrifugal compressor equipped with a cambered variable diffuser has been performed with varying diffuser vane angles. The test was conducted at the design speed of 20,800 rpm and the 80% design speed of 16,640 rpm for 5 diffuser angles : 65$^{\circ}$, 70$^{\circ}$, 75$^{\circ}$, 77.5$^{\circ}$, 80$^{\circ}$ The steady performance test results showed that choking mass flow rate decreases and total pressure ratio increases with a narrowed surge margin as the diffuser vane angle increases. Unsteady pressures were measured using high-frequency pressure transducers at the inducer and the diffuser throat to investigate the instability phenomena such as rotating stall and surge inside the compressor. From the unsteady measurements, it is found that the transient process from rotating stall to surge was mainly affected by diffuser angles. The results of the present study can be applied to the instability control of the centrifugal compressors using a variable diffuser.

Capacity Modulation of a Multi-Type Heat Pump System Using PID Control (PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 정대성;김민성;김민수;이원용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.446-475
    • /
    • 2000
  • Performance of a water-to-water multi-type heat pump system using R22 has been experimentally investigated. Total refrigerant flow rate was adjusted with a variable speed compressor and the refrigerant flow rate for two indoor units were controlled by electronic expansion valves. Evaporator outlet pressure of refrigerant and indoor unit outlet temperatures of secondary fluid were selected as controlled variables. Experiments were carried out for both cooling and heating modes using PID control method. Results show that the multi-type heat pump system can be adequately controlled by keeping control gains at certain levels for various operating conditions.

  • PDF

A Study on a Precision Temperature Control of Oil Coolers with Hot-gas Bypass Manner for Machine Tools Based on Fuzzy Control (퍼지제어를 이용한 공작 기계용 오일 쿨러의 핫가스 바이패스방식 정밀 온도 제어에 관한 연구)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.205-211
    • /
    • 2013
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the working speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a oil cooler to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the oil cooler system. This paper deals with design and implementation method of fuzzy controller for obtaining precise temperature characteristic of HB oil cooler system in machine tools. The opening angle of an electronic expansion valve are controlled to keep reference value and room temperature of temperature at oil outlet. Especially, the fuzzy controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.22^{\circ}C$.

The Development of 150HP/ 70,000rpm Super High Speed Motor Driver for Direct Drive Method Turbo Compressor (직접 구동방식의 터보 압축기를 위한 150마력,70,000rpm 초고속 전동기 구동 시스템 개발)

  • 권정혁;변지섭;최종경
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • Turbo compressor needs high speed rotation of impeller in structure, high rated gearbox and conventional induction motor. This mechanical system increased the moment of inertia and mechanical friction loss. Resently, the study of turbo compressor applied super high speed motor and drive, removing gearbox made its sire small and mechanical friction loss minimum. This paper describes the implementation of the vector control schemes for a variable-speed 131㎾ PMSM(Permanent Magnet Synchronous Motor) drive in super-high speed application.