• Title/Summary/Keyword: Compressor Vibration

Search Result 330, Processing Time 0.034 seconds

The Identification of Vibration Source and Its Transmission Paths In Compressor Using PCF Method (PCF법을 이용한 왕복동압축기의 진동원 및 진동전달경로 규명)

  • Lee, Dae-Sung;Hwang, Won-Gul;Lee, You-Yub;Im, Hyung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.386.1-386
    • /
    • 2002
  • It is necessary to determine the vibration source and its transmission paths in order to develop a low-noise compressor Through the use of multiple-input/single-output(MISO) model, the transmission paths of vibration within a reciprocating compressor have been investigated. In order to identify the transmission path, we measure the accelerations of the block and transverse vibrations of the line discharge tube. (omitted)

  • PDF

Analysis and Estimation of Vibration Characteristics of a Reciprocal Compressor with Variable Rotating Speed (가변속 압축기의 진동특성 분석 및 예측)

  • Jung, Byung-Kyoo;Lee, Yun-Gon;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2016
  • This paper deals with the vibration characteristics of a reciprocal compressor with variable rotating speed according to the change of operating frequencies. The equation of motion and exciting force of the equivalent compressor model were formulated, and the vibration responses at operating frequencies were predicted. The predicted results were compared with the measured results. Although the predicted results had little errors in operating condition, it represented good agreement in general. Especially, the natural frequencies obtained from the measurement were similar to those calculated by the eigenvalue problem of the equivalent model. The procedure and results in this paper can be utilized to the identification of the vibration characteristics of new compressor models.

Vibration analysis and diagnosis of air-compressor (공기압축기의 진동분석 및 진단)

  • Lee, J.H.;Kim, B.S.;Gu, D.S.;Kim, H.J.;Choi, B.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.994-999
    • /
    • 2008
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Because vibration diagnosis can avoid sudden breakdown of machine and reduce the maintenance costs. In the factory, Air-Compressor which can affect the performance and capacity of output is important machine. Therefore, in this paper, The measuring and analyzing is carried out for air-compressor in order to the factor of resonance and resonance avoidance for air-compressor. The result of diagnosis and solution is discussed in this paper.

  • PDF

Vibration Analysis of a Turbo Compressor Test Rig (터보 압축기 성능시험을 위한 리그 진동 분석)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok;Lee, Jin-Kun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.98-107
    • /
    • 2009
  • Vibration analysis of a turbo compressor test rig was carried out in order to investigate the vibrational characteristics of the compressor facility in KARI before conducting the compressor performance test of 5MW-class gas turbine engine for generation. The overall compressor test facility consists largely of inlet and exit ducts, a test section and a driving part. Vibration was measured with accelerometers at the test section and the driving part, especially at a main housing, a collector, a bearing carrier, a torquemeter, a gearbox, and an electric motor. Gap sensors are also installed to measure the rotordynamic characteristics of compressor shaft.

  • PDF

Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade (3차원 축류압축기 블레이드의 유체유발진동 해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yang, Guo Wei;Jung, Kyu-Kang;Kim, Kyung-Hee;Min, Dae-Gee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

Flow-induced Vibration(FIV) Analysis of a 3D Axial Compressor Blade (3차원 축류압축기 블레이드의 유체유발진동 해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yang, Guo Wei;Jung, Kyu-Kang;Kim, Kyung-Hee;Min, Dae-Gee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.551-559
    • /
    • 2009
  • In this study, flow-induced vibration(FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\epsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction(FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

TURBO TYPE AIR COMPRESSOR DESIGN FOR LOW VIBRATION LEVEL (저진동을 위한 터보형 공기압축기의 설계)

  • Kim, Myeong-Kuk;Jung, Yong-Soo;Park, No-gill
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.159-165
    • /
    • 1998
  • Bearing design of turbo type geared centrifugal air compressor for low vibration level has been studied. The Transfer Matrix Method was used in this paper to analyze the air-compressor consisting of impellers, multi-stage geared rotors, and oil-film hearings. We have to consider this air-compressor as multi-geared rotating system, because characteristics of rotor-bearing system are different from conventional characteristics of non-rotating system. From the view point of Rotordynamics, the stiffness and damping coefficient of oil-film bearing in case of compressor system are more sensitive than other design parameters such as shaft length, shaft diameter and the weight of impellers, etc. Therefore, the stiffness and damping coefficients on each bearing were considered as design parameters. As the result of this study, turbo type air compressor with low vibration level can be achieved.

  • PDF

The Vibration Characteristic of Optimizing Snubber of Reciprocating Type Hydrogen Compressor for Pressure Loss Reduction (압력 손실을 줄이기 위해 최적화된 왕복동식 수소 압축기용 완충기의 진동 특성 분석)

  • Kim, W.C.;Kim, H.J.;Jeong, J.H.;Jang, Y.S.;Choi, B.K.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1116-1122
    • /
    • 2008
  • The reciprocating type hydrogen compressor has a pulsation due to the reciprocative characteristics which results in noise and vibration. Snubber is installed for the relaxation of pulsation, but it causes reduction of compressor efficiency because of pressure loss. Five types of snubber were modeled for the numerical investigation of the effect of the relative position of inlet and outlet and buffer angle on the pulsation amplitude and pressure loss. MSC/NASTRAN is used as a numerical tool to identify the vibration characteristic of each type. Frequency responses in forced vibration mode are compared for various cases and buffer angles.

An Experimental and Numerical Study on Centrifugal Compressor Noise (원심압축기 소음측정과 계산에 관한 연구)

  • Sun, Hyo-Sung;Eom, Seung-Sin;Shin, Hyung-Ki;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.119-124
    • /
    • 2000
  • The 3-stage centrifugal compressor is used in order to measure the noise spectra of compressor, and analyze the results. Two cases are investigated for compressor noise components. Case I includes total system such as compressor, inter-cooler, motor, and Case II excludes cooling system. BPF tonal noise is important in compressor, and cooling system including inter-cooler contributes to broadband noise. Also, motor, gear box, and motor cooling fan are the second contributions to total compressor noise. Centrifugal compressor flow-field is calculated using two-dimensional grid and Navier-Stokes equations. Static pressure increases, and total pressure decreases, as air passes through the compressor components.

  • PDF

Force Identification of a Rotary Compressor and Prediction of Vibration on a Pipe (공조용 압축기의 가진력 규명 및 배관 진동 예측)

  • Lee, Han-Wool;Ryu, Sang-Mo;Jeong, Weui-Bong;Han, Hyung-Suk;Ahn, Jae-Woo;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.953-959
    • /
    • 2010
  • This paper deals with the process to identify the exciting forces generated from a rotary compressor. The equation of motion of a rigid compressor supported by several mounts was derived with 6 degree of freedom. The mass moment of inertia of compressor and the stiffness of rubber mounts were also identified by experiments. The exciting force at the center of mass of the compressor were estimated from the acceleration data measured at compressor shell. The piping system connected to the compressor was modeled. The acceleration of a pipe was predicted numerically by using the predicted exciting force. The numerical results showed good agreement with experimental results, which validated the identified exciting force.