• Title/Summary/Keyword: Compressor Muffler

Search Result 37, Processing Time 0.028 seconds

A Study on Improvement of Efficiency of Suction Muffler for Compressor (압축기용 흡입머플러의 성능개선에 관한 연구)

  • Jeong, Gyeong-Hun;Jung, Kyung-Hun;Lee, Eun-Young;Kim, Woo-Young;Lee, You-Yub;Hwang, Won-Gul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.220-227
    • /
    • 2002
  • The design of suction muffler for compressor aims to achieve a maximum noise reduction and a minimum pressure loss. Until now, the design process has been performed experimentally rather than theoretically. In this paper, to achieve the maximum noise reduction and minimum pressure loss. we studied the effect of the shape and volume of the expansion tube of the muffler on TL and pressure drop. We made an extensive use of computer program such as SYSNOISE. FLUENT, and STAR-CD to calculate the TL and pressure distribution of suction muffler. The design of the muffler is optimized with respect to flow loss and TL. Experiments are performed to check the result of design change, which proves satisfactory results. It is expected that this process can reduce time to design a muffler in the fields.

Development of a Low Noise and High Efficiency Rotary Compressor with a New Muffler (신규 저소음 및 고효율 머플러 적용 회전식 압축기 개발)

  • Jarng, In-Sun;Kim, Bong-Jun;Youn, Young;Sung, Choon-Mo;Lee, Seung-Kap
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.23-30
    • /
    • 2005
  • The rotary compressor is widely used in the air conditioner because it is efficient and compact. Recently, the need for silent and efficient compressors is much stronger than the past. The new type muffler was invented to reduce the noise level and to improve the efficiency. The new type muffler that has two side discharge holes and dome shape resulted in much lower overall noise level, especially noise levels around 1kHz than the old type one of one center discharge hole in the acoustic spectra. Also it showed a higher efficiency of air conditioner by lowering oil discharging amount of a compressor than old type one of a rectangular shape and two side discharge holes. The noise reduction and efficiency improvement by the new type muffler were verified by tests for votary compressors and air conditioners.

A Study on the Analysis and Improvement of the Acoustic Characteristics of the Muffler with Complex Geometry (복잡한 형상의 머플러 음향특성 해석 및 개선에 관한 연구)

  • 오상경;모진용;허만선
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.755-762
    • /
    • 1996
  • An acoustic transmission loss analysis method for mufflers with complex geometry is developed using MSC/NASTRAN on the basis of acoustic-structural analogy and two-microphone method. In this study, mufflers with simple and complex shapes are analyzed using this method and compared with theoretical and experimental results to verify it. Applying this method to design of discharge muffler in a rotary compressor, we obtained 2dB(A) of noise reduction in the range of lower than 1300Hz. Futhermore, adopting this technique for a suction muffler in reciprocal compressor, more than 10dB(A) noise reduction at 500Hz, and in total, 3dB(A) noise reduction is achieved.

  • PDF

Reduction of Flow-Induced Noise in an Expansion Muffler with Lids (삽입관이 있는 확장형 소음기에서의 기류음 감소)

  • Kang, Woong;Kim, Hyung-Jin;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within a compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation is associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in a turbocharger system. In this study, a expansion muffler with lids is devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler are investigated which are related to the unsteadiness of turbulence and pressure in the turbocharger system. A transfer matrix method is used to analyze the transmission loss of the muffler. A simple expansion muffler with lids is proposed for the reduction of high frequency component noise. Turbulence simulation is carried out by a standard k - ${\varepsilon}$ model. An optimal design condition of the muffler is obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise is achieved at the optimal design of the muffler as compared with the conventional muffler.

Integrated design method of suction muffler in compressor (압축기 흡입 머플러 통합적 설계 방안)

  • Wang, Semyung;Oh, Seungjae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.771-772
    • /
    • 2014
  • In this paper, the integrated design method of suction muffler in compressor was studied. There are three things to consider when designing this. First, the transmission loss was maximized to consider the noise reduction. Second, dissipation energy of fluid flow was minimized for energy efficiency. Finally, acoustical resonance frequency of suction muffler was controlled because energy efficiency can be increased by supercharging of refrigerant. Therefore, suction muffler was designed to have the specific resonance frequency. The input impedance was used for designing target acoustical resonance frequency. Topology optimization was used for optimization method.

  • PDF

Study of Muffler for Rotary Compressor by Taguchi Method Viewpoint (회전형 압축기용 머플러의 연구(1) : 다꾸찌 기법 관점에서)

  • 박성근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.548-553
    • /
    • 1998
  • The specific noise level of 18 rotary compressor mufflers were measured and these data were analyzed by the Taguchi robust design method and the neural network. The optimal design value obtained by the neural network generally showed good agreement with that by the Taguchi method. The effects of eight important design variables on the specific noise level were discussed.

  • PDF

A study on the reduction of the flow-induced noise in turbo-charger diesel engines (터보 차져 디젤 엔진에서의 기류음 감소를 위한 연구)

  • Kang, Woong;Kim, Hyung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2913-2917
    • /
    • 2007
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within the compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation was associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in turbocharger system. In this study, a sharp-edged reactive-type muffler was devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler were investigated which is related to the unsteadiness of turbulence and pressure in turbocharger system. A transfer matrix method was used to analyze the transmission loss of the muffler. Simple expansion muffler with extended tube of the reactive type is proposed for the reduction of high frequency component noise. Turbulence computation was carried out by a standard ${\kappa}-{\varepsilon}$ model. An optimal design condition of the muffler was obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise was achieved at the optimal design of the muffler as compared with the conventional turbocharger system.

  • PDF

Study of Muffler for Rotary Compressor by Taguchi Method Viewpoint (회전형 압축기용 머플러의 연구 (1) : 다꾸찌 기법 관점에서)

  • 박성근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.542-547
    • /
    • 1998
  • As the concern for a global energy conservation and environmental protection are increasing, it has been more important thing to correspond with CFC depletion. Alternate refrigerants have merit such as lower global warming effect, but also have demerits such as lower efficiency, miscibility, increasing noise and poor reliability problems. Then we have to develop more efficient, silent and robust compressors to satisfying world-wide demand. In this paper, parametric study on rotary compressor muffler for a room air-conditioner was carried out to investigate the effect of important design variables on noise by using Taguchi robust design method with signal-to-noise(S/N) ratio. Taguchi method seems to be helpful for finding optimum value of design variables for noise level. We also applied neural network to find optimal value of design variables.

  • PDF

A Study on the Gas Pulsation in a Rotary Compressor (로타리 압축기의 가스맥동에 관한 연구)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.648-655
    • /
    • 2002
  • For a discharge system of rotary compressor, analytical investigation on the discharge gas pulsation has been carried out. With the aid of four pole theory, acoustic impedance of the discharge system composed of muffler and cavities on both sides of motor with gas passages between them can be calculated using discrete acoustic elements described by transfer matrices, yielding the relationship between discharge mass flow rate and gas pulsation at the discharge port. This method of predicting the gas pulsation was validated by measurement data. Effects of change in discharge muffler geometries on the gas pulsation also were investigated, demonstrating that this method can be used for muffler design.

Topology Optimization of Muffler Hole of Rotary Compressor using GA (유전자 알고리즘을 이용한 회전식 압축기 머플러 토출구의 위상 최적설계)

  • ;Altay Dikec
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.790-795
    • /
    • 2002
  • The object of this research is limited to the reduction of compression process noise only among the main sources of compressor noise such as motor noise, compression process noise, and valve port flow noise. Thus the research is focused on the wave motion rather than the particle motion of sound wave travels. A muffler is a commonly used device to reduce the compression process noise, generated by the pressure pulsations caused by the cyclic compression process. In this research, the acoustic characteristics of the muffler are analyzed by using the normal gradient integral equation proposed by Wu and Wan. Moreover, a commercial code SYSNOISE developed by indirect variational boundary integral equation is also used to validate the results. For the noise reduction, the topology optimization technique using a genetic algorithm is used. The number, size and position of the muffler holes are considered as design variables. Compared with original design, the optimized design has very improved acoustic characteristics. Both numerical and experimental analyses are used to evaluate new design.

  • PDF