• Title/Summary/Keyword: Compressor Muffler

Search Result 37, Processing Time 0.055 seconds

Acoustic and Flow-filed Analysis of Suction Muffler in Compressor (압축기용 흡입머플러의 음향 및 유동해석)

  • 주재만;이학준;오상경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1162-1167
    • /
    • 2001
  • Suction valve fluttering is generated by reciprocating motions of the piston inhaling and discharging process of gas in the hermetic compressor. A reactive type suction muffler, which produces high pressure-drop because of its complicated flow path, controls the impulsive noise radiated from the flutter of suction valve. The high-pressure drop in the muffler increases the transmission loss, but reduces the EER(Energy Efficiency Ratio) of the compressor. We consider how to design the high acoustic attenuation and low pressure-drop performance to take account of the acoustic and flow performances of the suction muffler. In this study, we identified the suction noise source of compressor from the measurement of the acoustic pulsation and flutter of suction valve. We analyzed the acoustic characteristics of muffler using the finite element method, and compared the experimental and analytical characteristics of flow path of suction muffler. Theoretical predictions and experimental results are compared from the viewpoint of the acoustic performance and energy efficiency of the compressor.

  • PDF

CONCEPT DESIGN THEORY OF SHOCK ABSORBING MUFFLERS FOR AIR-BORNE NOISE (유체기인 방사소음 저감용 소음기 개념설계 이론)

  • Kim, Sang-Myeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.627-632
    • /
    • 2002
  • The paper considers acoustic analysis of the shock absorbing muffler within a rotary compressor. The internal space of the compressor is modelled as a combination of cavities and pipes. A simple one-dimensional impedance approach is used fur the acoustic analysis in the low frequency range, with ignoring the effects of gas flow and temperature gradients that are closely related to power efficiency of the compressor. Using the similarity between the vibration isolator and the shock absorbing muffler, the source strength transmissibility is newly proposed as a performance measure of the muffler and its validity is supported by power analysis. Some Important muffler design rules obtained are; (1) a muffler cavity and its opening throat should be used as a pair, (2) a long thin throat is desirable for high frequency noise isolation, (3) a large muffler cavity should be used with care since it shortens the working frequency range of the muffler. The rules were applied to redesign a compressor muffler currently in use, and a significant improvement was achieved by simply attaching a throat to the outlet holes of the muffler.

  • PDF

Acoustic Analysis of the Cavity in Rotary Compressor (로터리 압축기 내부의 소음해석)

  • 정의봉;김봉준;김재호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.97-103
    • /
    • 2000
  • Gas pulsation discharged from the cylinder causes noise in the rotary compressor. Mufflers are usually used to reduce the noise generated by the gas pulsation. The muffler has been designed to maximize the acoustic transmission loss of the muffler. The gas which went through muffler is discharged to the cavity in compressor. Thus, the acoustic characteristics of cavity should be taken into account in muffler design. In this paper, the program for the acoustic substructure synthesis method is developed. This program can be interfaced with SYSNOISE which is commercial acoustic package. Several types of mufflers designed to have the better acoustic performance are suggested in this work and compared with the existing commerical muffler in the compressor. The acoustic performance of mufflers taking into consideration of the cavity in the compressor is also carried out by the developed program.

  • PDF

Analysis of compressor muffler using transmissibility (전달률을 이용한 압축기용 소음기 해석)

  • 신강식;김상명;조용훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.713-718
    • /
    • 2003
  • The common practice to reduce the compressor noise is installing a muffler. The noise reduction performance of the muffler is the most critical one for the total noise characteristics of the compressor. In this paper, a simple impedance approach using the concept of transmissibility is employed for the acoustic analysis of the muffler, It is known that transmissibility is directly related to insertion loss, and thus transmissibility can Indicate the correct performance of the muffler. The analysis result is supported by a Finite Element Model. In addition, some experiments conducted also show that the transmissibility is mildly related to the measured sound pressure outside the compressor.

  • PDF

Smart Suction Muffler for a Reciprocating Compressor (왕복동 압축기에서의 고효율, 저소음 흡입머플러 개발)

  • Ju, Jae-Man;Choe, Jin-Gyu;O, Sang-Gyeong;Park, Seong-U
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1429-1436
    • /
    • 2000
  • Suction muffler is one of the important component of a compressor for low noise level and high efficiency. The suction muffler which has the complicated flow path gives the higher transmission loss of sound, but lower efficiency of compressor results from the superheating effect and flow loss in suction flow path. It is shown that the computational analysis of fluid dynamics are very popular methods for designing of high performance and low noise suction muffler. To reduce the thermodynamic and flow loss in suction process, the flow path of suction muffler was estimated by FVM(Finite Volume Method) and verified by experiments. And to enlarge the transmission loss of sound, the acoustic properties inside the suction muffler was analyzed by FEM(Finite Element Method) and experiments. The smart muffler which gives a good efficiency and low noise character was developed by using those methods, and the effect was evaluated in compressor by experiment.

  • PDF

Numerical investigation into the characteristics of flow and acoustic performances of mufflers for a reciprocating compressor (왕복압축기용 머플러의 유동-음향 성능 특성에 대한 수치적 고찰)

  • Kim, Sanghyeon;Cheong, Cheolung;Kim, Haeseung;Lee, Hyojae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.673-678
    • /
    • 2014
  • In a compressor, highly impulsive pressure fluctuations induced by a reciprocating piston and valves cause noise and vibration to be so critical issues that low noise requirement always challenges engineers developing it. A muffler is frequently used for reducing these impulsive noise components, but has adverse effects on compressor's performance due to additional pressure drop and heat transfer of refrigerant when it pass through the muffler. In this study, compressible full 3-dimensional CFD simulations are performed to investigate both of flow and acoustic performances of a muffler in use for compressors. On a basis of the analysis results, a parametric study using design factors introduced to improve flow and acoustic performances of the existing muffler is carried out. Finally, improved designs are suggested to confirm the current results.

  • PDF

Development of a Low Noise and High Efficiency Rotary Compressor by a New Muffler (신규 저소음 및 고효율 머플러 적용 회전식 압축기 개발)

  • Jarng, In-Sun;Kim, Bong-Jun;Youn, Young;Sung, Choon-Mo;Lee, Seung-Gap
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.533-539
    • /
    • 2004
  • The rotary compressor is widely used for the air conditioner because it is efficient and compact. In recent, the need for silent and efficient compressors is much stronger than the past. The new type muffler was invented to reduce noise level and to improve efficiency. The new type muffler that has two side discharge holes and dome shape represents much lower overall noise level, especially noise levels around 1kHz than the old type one that has one center discharge hole In acoustic spectra. Also it has higher air conditioner efficiency by lower oil discharging amount of a compressor than old type one that has rectangular shape and two side discharge holes. The noise reduction and efficiency improvement effects of the new type muffler were verified by tests for rotary compressors and air conditioners.

  • PDF

Numerical Investigation Into Flow and Acoustic Performances of Intake Mufflers in Reciprocating Compressor (왕복동식 압축기 흡입계 머플러의 유동/음향 특성에 대한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung;Park, Jaeseong;Kim, Haeseung;Lee, Hyojae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.532-538
    • /
    • 2015
  • In a reciprocating compressor, highly impulsive pressure fluctuations induced by a reciprocating piston give rise to serious noise and vibration problems. A muffler is frequently used to reduce this impulsive noise, but also has adverse effects on compressor performance due to additional pressure drop and heat transfer of refrigerants through it. Therefore, the flow and acoustic performances of mufflers used in a compressor should be considered simultaneously. In this study, both of flow and acoustic performances of mufflers are investigated using computational fluid dynamic techniques by solving full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations. For validation purpose, the numerical method is initially applied to predict the transmission loss of a simple expansion muffler, and its predicted results show good agreements with theoretical and experimental results. Then, the flow and acoustic performances of an existing muffler is numerically investigated. On the basis of the analysis results, a new muffler is purposed and its performances are compared with the existing one. Improved performances of the new muffler are confirmed.

Design of The Suction Muffler of a Reciprocating Compressor (왕복동식 압축기 흡입머플러 설계)

  • Lee, Jeong-Ho;An, Kwang-Hyup;Lee, In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.337-340
    • /
    • 2001
  • The suction muffler of a reciprocating compressor is used for reducing noise produced by pressure pulsations. According to the shape, the suction muffler is classified into one-chamber type, two-chamber type, Helmholtz resonator type, pipe-resonator type, and so on. These mufflers are used according to the characteristics of the frequency of compressor noise. In this study, four pole parameters have been used for calculating Transmission Loss of the muffler, and Insertion Loss has been acquired for the optimum design of the muffler by the experiment.

  • PDF

Noise Reduction of a Rotary Compressor by a new Muffler (저소음 머플러 적용 회전식 압축기의 소음 저감)

  • Kim, Bong-Jun;Youn, Young;Jung, Cheol-Hong;Lee, Seung-Gap
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.141-145
    • /
    • 2003
  • The rotary compressor is widely used for the air conditioner because it is efficient and compact. In recent, the need for silent compressors is much stronger than the past. The new type muffler was invented to reduce noise level and to improve sound quality. The new type muffler that has two side discharge holes represents much lower overall noise level, especially noise levels around 1KHz than the old type one that has one center discharge hole in acoustic spectra and dynamic pressure spectra. The noise reduction effects of the new type muffler were verified by noise tests for rotary compressors and air conditioners.

  • PDF