• 제목/요약/키워드: Compressive test

검색결과 3,609건 처리시간 0.033초

순환골재(循環骨材)를 혼입(混入)한 모르타르 경화체(硬化體)의 내구(耐久) 특성(特性) (Durability of Mortar Matrix Replaced with Recycled Fine Aggregates)

  • 김종필;이승태;정호섭;박광필;김성수
    • 자원리싸이클링
    • /
    • 제16권6호
    • /
    • pp.20-27
    • /
    • 2007
  • 순환골재를 콘크리트용 골재로 활용하기 위한 연구의 일환으로 2종류의 순환골재를 천연골재 중량의 0, 25, 50, 75 및 100%의 5단계로 혼입한 시멘트 경화체를 제조한 후 시멘트 경화체의 내구 특성을 평가한 결과, 골재의 특성에 따라서 시멘트 경화체의 성능이 상이하게 나타나는 것으로 확인되었다. RAB의 경우 RAA에 비하여 부착 모르타르 및 흡수율이 작아서 혼입율 50%까지는 모든 시험 항목에서 천연골재와 거의 유사하거나 약간 작은 값을 나타내었으며, 향후 순환골재를 콘크리트 구조용 골재로 사용하기 위해서는 순환골재에 부착된 모르타르량을 최대한 제거하고, 천연골재에 25%까지 혼입하여 사용해도 무관할 것으로 판단된다.

폐자원을 활용한 내장용 인조석재의 물리적 특성 (Physical Properties of Artificial Interior stone Using Waste Resources)

  • 유용진;이상수;송하영
    • 한국건축시공학회지
    • /
    • 제14권3호
    • /
    • pp.237-243
    • /
    • 2014
  • 지구온난화 현상으로 인해 환경 문제가 심각하며, 또한, 시멘트의 원료인 석회석과 골재의 무분별한 채취로 인한 환경파괴와 자원고갈의 심각성이 강조되고 있는 상황에서 문제점을 줄이려는 노력이 지속되고 있는 실정이다. 따라서, 본 연구에서는 천연골재 대체재인 폐자기를 혼합하여 적용시켰다. 또한, 시멘트 대체재로써 마그네시아 인산염 복합체와 플라이애시를 혼입하여 그에 따른 인조석재의 특성을 알아보고자 한다. 실험결과, 폐유리 혼합비율 60% 및 폐자기 혼합비율 70%가 인조석재의 전반적인 실험에서 가장 우수한 것으로 판단되며, 인조석재의 기초적인 자료로 활용할 수 있을 것으로 기대된다.

프리스트레스 측정을 위한 헤테로코어 광파이버 센서의 분해능 검증 기초실험 (Fundamental Experiment to Verify the Resolution of Hetero-core Fiber Optic Sensor for the Prestress Measurement)

  • 박익태;최광수;김태양;이환우
    • 한국전산구조공학회논문집
    • /
    • 제31권5호
    • /
    • pp.259-266
    • /
    • 2018
  • 이 실험연구는 PSC 교량의 생애주기 프리스트레스 측정용 헤테로코어 광파이버 센서를 개발하기 위한 선행연구이며, 기존의 헤테로코어 변위센서의 정밀도를 향상하기 위한 실험이다. 실험결과 최대 $2{\mu}m$ 단위의 변위 변화량을 측정할 수 있었다. 즉, 변위측정 길이가 30cm의 센서모듈을 설계했을 때 설계기준압축강도(fck)가 40MPa인 경우 0.2MPa 단위의 응력변화를 측정이 가능함을 확인하였다. 따라서 본 실험의 결과는 향후 진행될 내부매립용 센서모듈 개발에 유용한 자료로 활용될 수 있을 것으로 판단된다.

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

Development of a retrofit anchor system for remodeling of building exteriors

  • Yeun, Kyu Won;Hong, Ki Nam;Kim, Jong
    • Structural Engineering and Mechanics
    • /
    • 제44권6호
    • /
    • pp.839-856
    • /
    • 2012
  • To enable remodeling of the exterior of buildings more convenient, such finishing materials as curtain walls, metal panels, concrete panels or dry stones need to be easily detached. In this respect, this study proposed a new design of the slab for the purposes. In the new design, the sides of the slab were properly modified, and the capabilities of anchors fixed in the modified slab were experimentally tested. In details, a number of concrete specimens with different sizes and compressive strengths were prepared, and the effect of anchors with different diameters and embedment depths applied in the concrete specimens were tested. The test results of the maximum capacities of the anchors were compared with the number of current design codes and the stress distribution was identified. This study found that the embedment depth specified in the current design code (ACI318-08) should be revised to be more than 1.5 times the edge distance. However, with the steel sheet reinforcement, the experiment acquired higher tensile strength than the design code proposed. In addition, for two types of specimens in the tensile strength experiment, the current design code (ACI 318-08) is overestimated for the anchor depth of 75 mm. This study demonstrated that the ideal breakout failure was attainable for the side slot details of a slab with more than 180 mm of a slab thickness and less than 75 mm of an anchor embedment depth. It is expected that these details of the modified slab can be specified in the upgraded construction design codes.

Stereo-digital image correlation in the behavior investigation of CFRP-steel composite members

  • Dai, Yun-Tong;Wang, Hai-Tao;Ge, Tian-Yuan;Wu, Gang;Wan, Jian-Xiao;Cao, Shuang-Yin;Yang, Fu-Jun;He, Xiao-Yuan
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.727-736
    • /
    • 2017
  • The application of carbon fiber reinforced polymer (CFRP) in steel structures primarily includes two categories, i.e., the bond-critical application and the contact-critical application. Debonding failure and buckling failure are the main failure modes for these two applications. Conventional electrometric techniques may not provide precise results because of the limitations associated with single-point contact measurements. A nondestructive full-field measurement technique is a valuable alternative to conventional methods. In this study, the digital image correlation (DIC) technique was adopted to investigate the bond behavior and buckling behavior of CFRP-steel composite members. The CFRP-to-steel bonded joint and the CFRP-strengthened square hollow section (SHS) steel column were tested to verify the suitability of the DIC technique. The stereo-DIC technique was utilized to measure continuous deformation. The bond-slip relationship of the CFRP-to-steel interface was derived using the DIC data. Additionally, a multi-camera DIC system consisting of four stereo-DIC subsystems was proposed and applied to the compressive test of CFRP-strengthened SHS steel column. The precise buckling location and CFRP delamination of the CFRP-strengthened SHS steel column were identified. The experimental results confirm that the stereo-DIC technique can provide effective measurements for investigating the behaviors of CFRP-steel composite members.

하동-산청지역에 분포하는 회장암질암에 대한 대자율 비등방성 연구 (Anisotropy of Magnetic Susceptibility (AMS) of Anorthositic Rocks in the Hadong-Sanchong Area)

  • 김성욱;최은경;김인수
    • 지구물리
    • /
    • 제2권3호
    • /
    • pp.169-178
    • /
    • 1999
  • 하동-산청지역의 회장암질암에 대한 대자율 비등방성(AMS: anisotropy of magnetic susceptibility) 연구를 실시한 결과 5개 지점에서 지구조적 응력에 의한 자기적 엽리구조가, 6개 지점에서 흐름에 의한 자기적 선구조가 판별되었다. 자기적 엽리구조는 NW-SE방향의 압축력을 지시하며, 이는 회장암이 형성된 후, 후차적으로 작용되었던 것으로 판단된다. 이는 회장암질암 주변의 편마암류에서도 NE-SW방향의 엽리가 나타나는 사실로도 설명된다. 즉, 이들 변성암에 작용하였던 압축력은 회장암질암에도 함께 작용하였던 것이다. 등온잔류자기(IRM) 획득실험 결과, 이들 자기적 구조가 관찰되는 지점들에서의 주자성광물은 티탄자철석계열 광물이며, 일부 시료에는 소량의 적철석이 포함되어 있는 것으로 판단된다.

  • PDF

The effect of zirconia framework design on the failure of all-ceramic crown under static loading

  • Urapepon, Somchai;Taenguthai, Pakamard
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.146-150
    • /
    • 2015
  • PURPOSE. This in vitro study aimed to compare the failure load and failure characteristics of two different zirconia framework designs of premolar crowns when subjected to static loading. MATERIALS AND METHODS. Two types of zirconia frameworks, conventional 0.5 mm even thickness framework design (EV) and 0.8 mm cutback of full contour crown anatomy design (CB), were made for 10 samples each. The veneer porcelain was added on under polycarbonate shell crown made by vacuum of full contour crown to obtain the same total thickness of the experiment crowns. The crowns were cemented onto the Cobalt-Chromium die. The dies were tilted 45 degrees from the vertical plane to obtain the shear force to the cusp when loading. All crowns were loaded at the lingual incline of the buccal cusp until fracture using a universal testing machine with cross-head speed 0.5 mm/min. The load to fracture values (N) was recorded and statistically analyzed by independent sample t-test. RESULTS. The mean and standard deviations of the failure load were $1,170.1{\pm}90.9$ N for EV design and $1,450.4{\pm}175.7$ N for CB design. A significant difference in the compressive failure load was found (P<.05). For the failure characteristic, the EV design was found only cohesive failures within veneering porcelain, while the CB design found more failures through the zirconia framework (8 from 10 samples). CONCLUSION. There was a significant difference in the failure load between two designs, and the design of the framework influences failure characteristic of zirconia crown.

Seismic behavior of steel reinforced concrete (SRC) T-shaped column-beam planar and 3D hybrid joints under cyclic loads

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.555-572
    • /
    • 2015
  • This paper presents an experimental study of three two-dimensional (2D/planar) steel reinforced concrete (SRC) T-shaped column-RC beam hybrid joints and six 3D SRC T-shaped column-steel beam hybrid joints under low cyclic reversed loads. Considering different categories of steel configuration types in column cross section and horizontal loading angles for the specimens were selected, and a reliable structural testing system for the spatial loading was employed in the tests. The load-displacement curves, carrying capacity, energy dissipation capacity, ductility and deformation characteristics of the test subassemblies were analyzed. Especially, the seismic performance discrepancies between planar hybrid joints and 3D hybrid joints were intensively compared. The failure modes for planar loading and spatial loading observed in the tests showed that the shear-diagonal compressive failure was the dominating failure mode for all the specimens. In addition, the 3D hybrid joints illustrated plumper hysteretic loops for the columns configured with solid-web steel, but a little more pinched hysteretic loops for the columns configured with T-shaped steel or channel-shaped steel, better energy dissipation capacity & ductility, and larger interlayer deformation capacity than those of the planar hybrid joints. Furthermore, it was revealed that the hysteretic loops for the specimens under $45^{\circ}$ loading angle are generally plumper than those for the specimens under $30^{\circ}$ loading angle. Finally, the effects of steel configuration type and loading angle on the seismic damage for the specimens were analyzed by means of the Park-Ang model.

St/BA 폴리머 시멘트 모르타르의 물리적 특성 및 내구성 (Physical Properties and Durability of Polymer Modified Mortar Using Styrene and Butyl Acrylate Latexes)

  • 형원길
    • 폴리머
    • /
    • 제33권4호
    • /
    • pp.342-346
    • /
    • 2009
  • 본 연구에서는 스티렌(styrene; St)과 부틸아크릴레이트(butyl acrylate; BA)를 단량체 비에 따라 합성 제조하고, 합성제조된 시멘트 혼화용 폴리머를 혼입한 폴리머 시멘트 모르타르의 물리적 성질과 내구성에 대한 특성을 보통 시멘트 모르타르와 기존에 생산되어 현장에 적용되고 있는 St/BA계 폴리머 시멘트 모르타르를 비교 분석하고자 하였다. 실험결과, St/BA의 단량체 비가 50:50, 60:40일 경우에는 시멘트 혼화용으로 사용하기에 가장 적합하였으며, 강도특성에서도 우수한 결과를 나타냈다. 또한, 방수성능과 염화물 이온에 대한 침투 저항성, 그리고 중성화 저항성도 St/BA의 단량체 비가 증가할수록, 폴리머 시멘트 비가 증가할수록 증진효과가 우수한 결과를 나타냈다. 따라서, 본 연구를 통해 합성제조된 St/BA 라텍스를 시멘트 모르타르에 혼입할 경우 우수한 성능개선 효과를 얻을 수 있었다.