• Title/Summary/Keyword: Compressive test

Search Result 3,614, Processing Time 0.026 seconds

An Experimental Investigation of the Variations of the Elastic Wave Velocities with Compaction Energy for Railway Roadbed Materials (다짐 에너지를 고려한 노반 성토 재료의 탄성파 속도 변화의 실험적 분석)

  • Kim, Hak-Sung;Jung, Young-Hoon;Mok, Young-Jin;Lee, Jin-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1037-1047
    • /
    • 2013
  • A systematic laboratory compaction testing was performed with the laboratory seismic measurements of the compacted specimens sampled from various compaction fills and was supplemented with in-situ seismic testing to investigate the effects of compaction energy on the elastic wave velocities of the railway roadbed materials. The both variances of the compressive and shear wave velocities with moisture content curve ($V_p$-w and $V_s$-w curves) are similar to the general trend of the density-moisture content curve(${\gamma}_d$-w curve). At the wet side of optimal moisture content (OMC), either $V_p$ or $V_s$ does not significantly increase, which is well reflecting the no gaining in density with the increasing compaction energy exceeding modified-D compaction effort. $V_p$ increases linearly with ${\gamma}_d$ at the dry side of OMC, while it does exponentially at the wet side. The in-situ wave velocities were found to be influenced by the level of confinement and $V_s$ was more sensitive to compaction energy than $V_p$.

Autogenous Shrinkage Properties of High Strength Alkali Activated Slag Mortar (고강도 알칼리 활성 슬래그 모르타르의 자기수축 특성)

  • Oh, Sang-Hyuk;Hong, Sung-Hyun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • Recently, lots of researches on alkali-activated slag (AAS) concrete have been carried out to resolve the environmental issues such as recycling by-products and global warming. AAS concrete would have high strength and high level of durability. On the other hand, it is known that large amount of shrinkage occurred in AAS concrete due to rapid alkaline reaction in the early age, and however, the related studies about autogenous shrinkage of high strength AAS mortar are relatively rare. In this study, fresh mortar properties such as flow and setting time, compressive strength and autogenous shrinkage of AAS mortar with W/B=0.40 to 0.50, were measured. AAS mortar was activated with sodium silicate (Ms=1.0) with 5, 6 and 7 % of $Na_2O$. Test results revealed that AAS morar shows larger autogenous shrinkage than OPC mortar and the lower W/B of AAS mortar, the greater autogenous shrinkage. Therefore, the application of appropriate curing and the use of shrinkage reduction admixture would be needed to reduce autogenous shrinkage of AAS mortar.

Mechanical Properties of Strain Hardening Cement-Based Composite (SHCC) with Recycled Materials (자원순환형 재료를 사용한 변형경화형 시멘트 복합체(SHCC)의 역학적 특성)

  • Kim, Sun-Woo;Cha, Jun-Ho;Kim, Yun-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.727-736
    • /
    • 2010
  • This paper describes results of an preliminary study to produce strain hardening cement-based composites (SHCCs)with consideration of sustainability for infrastructure applications. The aims of this study are to evaluate the influence of recycled materials on the mechanical characteristics of SHCCs, such as compressive, four-point bending, and direct tensile behaviors, and to give basic data for constitutive model for analyzing and designing infra structures with SHCCs. In this study, silica sand, cement, and PVA fibers, were partially replaced with recycled sand, fly-ash, and FET fibers in the mixture of SHCCs, respectively. Test results indicated that fly-ash could improve both bending and direct tensile performance of SHCCs due to increasing chemical bond strength at the interface between PVA fibers and cement matrices. However, SHCCs replaced with PET fibers showed much lower performance in bending and direct tensile tests due to originally low mechanical properties of own fibers, although compressive behavior is similar to PVA2.0 specimen. Also, it was noted that the recycled sand would increase elastic modulus of SHCCs due to larger grain size compared to silica sand. Based on pre-set target value to maintain the performance of SHCCs, it was concluded that the replacement ratio below 20% of fly-ash or below 50% of recycled sands would be desirable for creating sustainable SHCCs.

Estimation of R-value and Uniaxial Compressive Strength of Rocks around the King Sejong Station, Barton Peninsula, Antarctica from SilverSchmidt Q-value (실버슈미트 Q값으로부터 남극 바톤반도 세종과학기지 주변 암석의 R값 및 일축압축강도 추정)

  • Lim, Hyoun-Soo;Jang, Bo-An;Kim, Jung-Han;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.199-209
    • /
    • 2015
  • The rebound hardness test using the SilverSchmidt hammer was performed for diorite, granodiorite, and andesite exposed around the King Sejong Station, Barton peninsula. Then, the R-value and uniaxial compressive strength (UCS) of these rocks were estimated from the Q-values which were obtained from the SilverSchmidt hammer. The Q-value of diorite was distributed in the range from 67.0 to 89.5, granodiorite of the range from 57.5 to 89.0, and andesite of the range from 58.0 to 76.5. The average Q-values of diorite, granodiorite, and andesite were 76.0, 72.0, and 67.0, respectively. The converted UCS of diorite was distributed in the range from 118 to 195 MPa, granodiorite of the range from 91 to 193 MPa, and andesite of the range from 92 to 148 MPa. The average UCS of diorite, granodiorite, and andesite were 147, 136, and 117 MPa, respectively. The converted R-value of diorite was distributed in the range from 53.0 to 72.2, granodiorite of the range from 45.4 to 71.8, and andesite of the range from 45.8 to 60.9. The average Q-values of diorite, granodiorite, and andesite were 60.0, 58.0, and 53.0, respectively. The R-value was represented approximately 20% lower than the Q-value. In conclusion, it will be possibile that the R-value and UCS of rocks under the extreme area from the SilverSchmidt Q-value are evaluated.

Influence of Glass Fiber Orientation on the Bi-directional GFRP Characteristics (직교이방향 GFRP 재료 특성에 미치는 유리 섬유방향의 영향)

  • Suh, Jung-Joo;Moon, Duk-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 1985
  • The tensile and dielctric strength of the epoxied resin with bi-directional woven glass fibers with a laminate of two layers(G-10) are studied, and the test parameter is the angle between fiber orientation and the tensile axis. The obtained results may be summaried as follows: 1) when the angle between fiber orientation and tensile axis was varied from 0$^{\circ}$ to 45$^{\circ}$ the yield and fracture stresses have a tendency to decrease with increase in the angle. Especially, the decrease rates in the yield and fracture stresses are changed remarkably in the range of 0$^{\circ}$ to 15$^{\circ}$. 2) The fracture strain has showed the maximum value when the angle between fiber orientation and tensile axis is 45$^{\circ}$, and showed the rapid rate of change from 15$^{\circ}$ to 45$^{\circ}$. 3) For the sample with same angle between fiber orientation and tensile axis the maximum dielectric strength under compressive stress is decreased with increase in tensile stress, when the compressive stress is increased as a parameter of tensile stress. 4) When the angle between fiber orientation and tensile axis is 45$^{\circ}$, the dielectric strength showed the worst value, as the mechanical strength did.

  • PDF

Behavior of Hybrid Stud under Compressive Load (복합스터드의 압축 좌굴 거동)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.609-619
    • /
    • 2004
  • An investigation was conducted on the activities around Europe in order to solve the problem of the thermal bridging of steel studs, which had caused a significant disadvantage. This study included the following: diminishing the contact area between the studs and the sheathing, lengthening the heat transfer route, replacing the steel web with a less conductive material, and placing foam insulation in locations where the thermal shorts are most critical. Although energy efficiency is usually the focus of such foreign cases because their stud application is mostly limited to low-rise residential buildings, both structural and thermal performance are taken into consideration in this study because these target middle-story buildings. A hybrid stud composed of steel and polymer was also developed. This hybrid stud, which is 150 SL in size, is made of a galvanized steel sheet (SGC58) and a glass fiber reinforced polymer (GFRP) withepoxy bonding. A total of 32 specimens were manufactured. Its parameters comprise two types of connection detail,s: the thickness of steel (1.0mm and 1.2mm) and of the GFRP (4mm-4ply and 6mm-6ply), and the ratio of the length to the depth (L/D = 3, 6, 9, 12). Steel stud specimens with the same conditions were compared to the hybrid stud. The test revealed that in the case of the steel specimen with a thickness of 1.0mm, the maximum load of hybrid studs increased an average of 1.62 times comparedto that of the steel stud. In the case of the steel specimen with a thickness of 1.2mm, on the other hand, the average increase was 1.46times. All specimens showed full composite action until the collapse.

The Fundamental Properties of High Fluidity Mortar with Activated Ternary Blended Slag Cement (활성화된 삼성분계 고유동 모르타르의 기초특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Hyoung-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • This research presents the results of the strength and drying shrinkage properties to study the effect of ground granulated blast furnace slag(GGBFS), fly ash(FA) and calcium sulfoaluminate(CSA) for activated ternary blended slag cement. The activated ternary blended cement(ATBC) mortar were prepared having a constant water-cementitious materials ratios of 0.4. The GGBFS contents ratios of 100%, 80%, 70% and 60%, FA replacement ratios of 10%, 20%, 30% and 40%, CSA ratios of 0%, 10%, 20% and 30% were designed. The superplasticizer of polycarboxylate type were used. The activator was used of 10% sodium hydroxide(NaOH) + 10% sodium silicate($Na_2SiO_3$) by weight of binder. Test were conducted for mini slump, setting time, V-funnel, water absorption, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA contents for all mixtures. Moreover, the setting time, water absorption ratios and drying shrinkage ratio decrease with and increase in CSA. One of the major reason for the increase of strength and decrease of drying shrinkage is the accelerated reactivity of GGBFS with alkali activator and CSA. The CSA contents is the main parameter to explain the strength development and decreased drying shrinkage in the ATBC.

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.

A STUDY ON THE VICKER'S HARDNESS AND DIAMETRAL TENSILE STRENGTH OF HYBRID GLASS IONOMER (Hybrid Glass Ionomer cement의 비커스경도와 간접인장강도에 관한 연구)

  • Kwon, Kyun-Won;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.505-518
    • /
    • 1997
  • The objective of this investigation was to compare the effects of water storage on the aspect of hardness and diametral tensile strengths of four hybrid glass ionomer cements(two compomers and two resin-reinforced glass ionomers) with a resin composite material. One composite resin(Degufill Ultra), two compomers(Dyract, Compoglass Cavifil), and two resin-reinforced glass ionomers(Fuji Duet, Vitremer) were used in this study. Cylindrical specimens were prepared and stored at $36{\pm}1^{\circ}C$ in distilled water for 10 minutes after set, and then tested on an Instron testing machine(No.4467) at 1.0 mm/min displacement rate. Vicker's hardness and diametral tensile strengths as time elapsed were measured after aging in water for 10 minutes, 1 hour, 3 hours, 1 day, 3 days, 5 days and 7 days at $36{\pm}1^{\circ}C$. During the test of diametral tensile strength, stress-strain curves were obtained, from which the compressive modulus were calculated and compared. The structure of four set glass ionomer cement mass was observed on SEM(Hitachi, S-2300) after being etched with 9.6% hydrofluoric acid for 1 minute. The results were as follows; 1. The hardness of the experimental group(compomer and the resin reinforced glass ionomer cement) did not exceed the value of control group(Degufill Ultra). 2. Vicker's hardness of the Fuji Duet tended to increase succeedingly, Dyract was decreased after 3 hours in water, and Vitremer was the lowest. 3. The control group(Degufill Ultra) presented progressively on increased diametral tensile strength with time, Fuji Duet were decreased after 3 days, Compoglass Cavifil and Vitremer were decreased after 5 days in water storage. 4. Compressive modulus of the control group(Degufill Ultra) and Dyract were increased sharply timely, Fuji Duet and Vitremer were increased smoothly by lapse of time in water. Fuji Duet were stronger than Vitremer. On the other hand, Vitremer exhibited the lowest toughness. 5. The microstructure of compomer was similar with that of the composite resin(Degufill Ultra), and the fillers in resin-reinforced glass ionomer cements were noticed. It can be concluded that mechanical properties of hybrid glass ionomer cements is weaker than composite resin, and that the compomers or the resin-reinforced glass ionomers can not substitute the composite resins. A plenty of considerations should be done on the application of them to the area under the loading and high wear has a little adverse effect on the mechanical properties on the water storage for 7 days. The further research should be needed to confirm the advantage of the compomer.

  • PDF