• Title/Summary/Keyword: Compressive test

Search Result 3,609, Processing Time 0.029 seconds

Prediction and Analysis of Pre-Consolidation by Unconfined Compressive Strength (일축압축강도에 의한 선행압밀응력 예측 및 분석)

  • Song, Chang Seob;Kim, Myeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.71-77
    • /
    • 2016
  • This study was to evaluate the feasibility of pre-consolidation pressure distribution characteristic of western and southern coastal region, using correlation of unconfined compressive strength and preceding research equation. Pre-consolidation of western and southern region showed similar trends undrained shear strength and pre-consolidation pressure in proportion to unconfined compressive strength. Predicted results of U.S. NAVY. (1982) equation revealed a small error western 9.7 % and southern 0.4 %. Prediction correlation results of pre-consolidation using unconfined compressive strength revealed an error western 16.8 % and southern 0.7 %. It was reported that less than 20 percent of pre-consolidation pressure prediction result of Casagrande forecasting error. Estimates of pre-consolidation pressure are possible, before the standard consolidation test, because it was reported that less than 20 % of the forecasting errors of Casagrande.

Biaxial Compressive Deformation Characteristics and Microstructure Change in a Round Copper Pipe (원형 동관의 2축압축 변형특성 및 조직변화에 관한 연구)

  • Yoo, C.K.;Won, S.T.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.67-73
    • /
    • 2013
  • The deformation characteristics and microstructure changes in a round copper pipe under biaxial compression was studied using a horizontal compression die. The change of material properties, punch load and deformation behavior were monitored using various compressive deformation rates in the range of 0.5mm/min.~450mm/min. The strains, either tensile or compressive, were estimated from Vickers microhardness test results. The punch load and deformation characteristics of the round copper pipes were found to change greatly at a deformation rate of about 200mm/min. The punch load decreased with increasing compressive deformation rate. The results of numerical simulations agreed well with what was expected from the final microstructure and the hardness profile estimated from the final deformation strains.

Compressive and Flexural Properties of Hemp Fiber Reinforced Concrete

  • Li, Zhijian;Wang, Lijing;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.187-197
    • /
    • 2004
  • The compressive and flexural properties of hemp fiber reinforced concretes (FRC) were examined in this paper. Natural hemp fiber was mixed using dry and wet mixing methods to fabricate the FRC. Mechanical properties of the FRC were investigated. The main factors affecting compressive and flexural properties of the FRC materials were evaluated with an orthogonal test design. Fiber content by weight has the largest effect. The method for casting hemp FRC has been optimised. Under the optimum conditions, compressive strength increased by 4 %, flexural strength increased by 9 %, flexural toughness increased by 144 %, and flexural toughness index increased by 214 %.

The Stress Distribution and Improvement of fatigue Strength for Notched Materials by Shot Peening (Shot peening 가공에 의한 노치재의 응력분포와 피로강도의 개선)

  • Lee, Seung-Ho;Kim, Hei-Song
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.120-126
    • /
    • 1998
  • Second step shot peening was applied on both smooth specimen and U-notch specimen in order to investigate the stress distribution and the improvement in fatigue strength. Various experiments and measurements such as rotary bending fatigue test and the measurement of compressive residual stress were performed. The results showed that the fatigue strength of second step shot peened specimens increased by 34 percent compared to that of unpeened ones. Compressive residual stress also considerably increased, which resulted in the increase of fatigue strength. finite element analysis showed that shot peening is effective in decreasing the bending stress by external force. The effectiveness of shot peening in reducing the compressive residual stress was anticipated by the superposition of the concentrated stress and the compressive residual stress.

  • PDF

The Effect or Resin ann ruler Type on the compressive strength of Light-activated Composite Resins (광중합형 복합레진의 압축강도에 미치는 레진과 필러의 영향)

  • 원대희
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • This study was performed to evaluate the effect of resin and filler type on the compressive strength of light-activated composite resins. Experimental composite resins containing either amorphous spherical silica or crushed quartz in two matrix resins of BisGMA/TEGDMA and UTMA/TEGDMA were prepared and the specimens of 3 m in diameter and 6m in length were made. Compressive test was subjected to a crosshead speed of 0.5 mm/min, and the fracture surFaces were examined by SEM. The compressive strength of UTMA-based composite resin was higher than that of BisGMA-based composite resin. The loading rate of spherical silica was higher than that of crushed silica when the size dis- tribution of fillers was same. Strength decrease of Bis-GMA-based composite resin was severer than that of UTMA-based composite resin in a $37^{\circ}$c water environment. Fracture surface showed that the composite resin failure developed along the matrix resin and the filler/resin interface region.

  • PDF

A Compressive Strength and Mixing Properties of Lightweight Porous Block Using Lightweight Aggregate by Variation of Manufacture Time (인공경량골재 사용 경량투수블록의 제조시간 변화에 따른 배합 및 압축강도 특성)

  • Kim, Young-Uk;Lee, Kyung-Su;Oh, Tea-Gue;Jeong, Su-Bin;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.118-119
    • /
    • 2018
  • The purpose of this study is to investigate the compressive strength and mixing properties of the lightweight block, which has been manufactured without the pre-wetting process, in the lightweight block using domestic artificial lightweight aggregate. The test results of the specimens produced within 30 minutes after the preparation showed high compressive strength but poor permeability. Therefore, the elapsed time after the manufacture, which is expected to have required compressive strength and permeability, was about 60 minutes in this study.

  • PDF

A Study on the Mix Design of Antiwashout Underwater Concrete According to Compressive Strength (압축강도에 따른 수중불분리 콘크리트의 배합설계에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.91-97
    • /
    • 2003
  • At present, the antiwashout underwater concretes are used as popular construction materials in European countries, the United States and Japan. The water-soluble polymers in the antiwashout underwater concretes provide excellent segregation or washout resistance, self-compaction and self-leveling property to the concretes. The purpose of this study is to recommend to optimum mix proportions of antiwashout underwater concretes according to compressive strength of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$. The antiwashout underwater concretes are prepared with various unit cement content, unit water content, sand-aggregate ratio, unit antiwashout agent and superplasticizer content. And they are tested for flowability, and compressive strength. From the test results, it is possible to recommend the optimum mix proportions of antiwashout underwater concretes according to compressive strengths within the range of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$.

The Effect of Functional Water on the compressive strength of Mortar (기능수가 모르타르의 압축강도에 미치는 영향)

  • Han, Jeong-Seb
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.79-82
    • /
    • 2002
  • To study the effect of functional water on the compressive strength of mortar, city water was changed to functional water through ceramics treatment. The change of characteristics of water was measured with $O^{17}$ NMR and Killian Camera. The compressive strength of mortar was measured with various curing conditions. The test results show that by the ceramics treatment the characteristics of city water was changed. At 28 days under curing condition, the compressive strength of mortar which was mix-proportioned with treated water was increased about 22 % than that of mortar which was mix-proportioned with untreated city water.

  • PDF

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

Analyzing the Strength Development of Concrete with Function of Non-Sintered Hwangto Admixture Ratio at Early Ages (초기 재령에서 비소성 황토 혼입율에 따른 콘크리트의 강도 발현 분석)

  • Kim, Tae-Hyung;Kim, Won-Chang;Choi, Hyung-Gil;Choi, Hee-Yong;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.39-40
    • /
    • 2023
  • In this study, the compressive strength development was analyzed at early ages of concrete specimens admixed with non-sintered hwangto to reduce the CO2 emissions generated during cement production. The W/B of the specimens was set at 0.41, the percentage of non-sintered hwangto admixture was set at three levels of 15, 30, and 45%, and the compressive strength were measured at 1, 3, 7, and 28 days. The results showed that the compressive strength decreases as the percentage of non-sintered hwangto increases, but the strength development rate increases, and the NHTC41-15 test specimen developed a compressive strength close to NC41 at 28 days.

  • PDF