• Title/Summary/Keyword: Compressive sensing

Search Result 143, Processing Time 0.024 seconds

Smoothed Group-Sparsity Iterative Hard Thresholding Recovery for Compressive Sensing of Color Image (컬러 영상의 압축센싱을 위한 평활 그룹-희소성 기반 반복적 경성 임계 복원)

  • Nguyen, Viet Anh;Dinh, Khanh Quoc;Van Trinh, Chien;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Compressive sensing is a new signal acquisition paradigm that enables sparse/compressible signal to be sampled under the Nyquist-rate. To fully benefit from its much simplified acquisition process, huge efforts have been made on improving the performance of compressive sensing recovery. However, concerning color images, compressive sensing recovery lacks in addressing image characteristics like energy distribution or human visual system. In order to overcome the problem, this paper proposes a new group-sparsity hard thresholding process by preserving some RGB-grouped coefficients important in both terms of energy and perceptual sensitivity. Moreover, a smoothed group-sparsity iterative hard thresholding algorithm for compressive sensing of color images is proposed by incorporating a frame-based filter with group-sparsity hard thresholding process. In this way, our proposed method not only pursues sparsity of image in transform domain but also pursues smoothness of image in spatial domain. Experimental results show average PSNR gains up to 2.7dB over the state-of-the-art group-sparsity smoothed recovery method.

Research on Multiple-image Encryption Scheme Based on Fourier Transform and Ghost Imaging Algorithm

  • Zhang, Leihong;Yuan, Xiao;Zhang, Dawei;Chen, Jian
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • A new multiple-image encryption scheme that is based on a compressive ghost imaging concept along with a Fourier transform sampling principle has been proposed. This further improves the security of the scheme. The scheme adopts a Fourier transform to sample the original multiple-image information respectively, utilizing the centrosymmetric conjugation property of the spatial spectrum of the images to obtain each Fourier coefficient in the most abundant spatial frequency band. Based on this sampling principle, the multiple images to be encrypted are grouped into a combined image, and then the compressive ghost imaging algorithm is used to improve the security, which reduces the amount of information transmission and improves the information transmission rate. Due to the presence of the compressive sensing algorithm, the scheme improves the accuracy of image reconstruction.

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

A RSS-Based Localization for Multiple Modes using Bayesian Compressive Sensing with Path-Loss Estimation (전력 손실 지수 추정 기법과 베이지안 압축 센싱을 이용하는 수신신호 세기 기반의 위치 추정 기법)

  • Ahn, Tae-Joon;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In Wireless Sensor Network(WSN)s, the detection of precise location of each node is essential for utilizing sensing data acquired from sensor nodes effectively. Among various location methods, the received signal strength(RSS) based localization scheme is mostly preferable in many applications because it can be easily implemented without any additional hardware cost. Since a RSS-based localization scheme is mainly affected by radio channel or obstacles such as building and mountain between two nodes, the localization error can be inevitable. To enhance the accuracy of localization in RSS-based localization scheme, a number of RSS measurements are needed, which results in the energy consumption. In this paper, a RSS based localization using Bayesian Compressive Sensing(BSS) with path-loss exponent estimation is proposed to improve the accuracy of localization in the energy-efficient way. In the propose scheme, we can increase the adaptative, reliability and accuracy of localization by estimating the path-loss exponents between nodes, and further we can enhance the energy efficiency by the compressive sensing. Through the simulation, it is shown that the proposed scheme can enhance the location accuracy of multiple unknown nodes with fewer RSS measurements and is robust against the channel variation.

A Study on the ISAR Image Reconstruction Algorithm Using Compressive Sensing Theory under Incomplete RCS Data (데이터 손실이 있는 RCS 데이터에서 압축 센싱 이론을 적용한 ISAR 영상 복원 알고리즘 연구)

  • Bae, Ji-Hoon;Kang, Byung-Soo;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.952-958
    • /
    • 2014
  • In this paper, we propose a parametric sparse recovery algorithm(SRA) applied to a radar signal model, based on the compressive sensing(CS), for the ISAR(Inverse Synthetic Aperture Radar) image reconstruction from an incomplete radar-cross-section(RCS) data and for the estimation of rotation rate of a target. As the SRA, the iteratively-reweighted-least-square(IRLS) is combined with the radar signal model including chirp components with unknown chirp rate in the cross-range direction. In addition, the particle swarm optimization(PSO) technique is considered for searching correct parameters related to the rotation rate. Therefore, the parametric SRA based on the IRLS can reconstruct ISAR image and estimate the rotation rate of a target efficiently, although there exists missing data in observed RCS data samples. The performance of the proposed method in terms of image entropy is also compared with that of the traditional interpolation methods for the incomplete RCS data.

Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising (Denoising ISTA-Net: 측면주사 소나 영상 잡음제거를 위한 강화된 비선형성 학습 기반 압축 센싱)

  • Lee, Bokyeung;Ku, Bonwha;Kim, Wan-Jin;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.246-254
    • /
    • 2020
  • In this paper, we propose a learning based compressive sensing algorithm for the purpose of side scan sonar image denoising. The proposed method is based on Iterative Shrinkage and Thresholding Algorithm (ISTA) framework and incorporates a powerful strategy that reinforces the non-linearity of deep learning network for improved performance. The proposed method consists of three essential modules. The first module consists of a non-linear transform for input and initialization while the second module contains the ISTA block that maps the input features to sparse space and performs inverse transform. The third module is to transform from non-linear feature space to pixel space. Superiority in noise removal and memory efficiency of the proposed method is verified through various experiments.

Introduction and Performance Analysis of Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery (압축 센싱 신호 복구를 위한 AMP(Approximate Message Passing) 알고리즘 소개 및 성능 분석)

  • Baek, Hyeong-Ho;Kang, Jae-Wook;Kim, Ki-Sun;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1029-1043
    • /
    • 2013
  • We introduce Approximate Message Passing (AMP) algorithm which is one of the efficient recovery algorithms in Compressive Sensing (CS) area. Recently, AMP algorithm has gained a lot of attention due to its good performance and yet simple structure. This paper provides not only a understanding of the AMP algorithm but its relationship with a classical (Sum-Product) Message Passing (MP) algorithm. Numerical experiments show that the AMP algorithm outperforms the classical MP algorithms in terms of time and phase transition.

Primary user localization using Bayesian compressive sensing and path-loss exponent estimation for cognitive radio networks

  • Anh, Hoang;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2338-2356
    • /
    • 2013
  • In cognitive radio networks, acquiring the position information of the primary user is critical to the communication of the secondary user. Localization of primary users can help improve the efficiency with which the spectrum is reused, because the information can be used to avoid harmful interference to the network while simultaneity is exploited to improve the spectrum utilization. Despite its inherent inaccuracy, received signal strength based on range has been used as the standard tool for distance measurements in the location detection process. Most previous works have employed the path-loss propagation model with a fixed value of the path loss exponent. However, in actual environments, the path loss exponent for each channel is different. Moreover, due to the complexity of the radio channel, when the number of channel increases, a larger number of RSS measurements are needed, and this results in additional energy consumption. In this paper, to overcome this problem, we propose using the Bayesian compressive sensing method with a calibrated path loss exponent to improve the performance of the PU localization method.

Novel schemes of CQI Feedback Compression based on Compressive Sensing for Adaptive OFDM Transmission

  • Li, Yongjie;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.703-719
    • /
    • 2011
  • In multi-user wireless communication systems, adaptive modulation and scheduling are promising techniques for increasing the system throughput. However, a mass of wireless recourse will be occupied and spectrum efficiency will be decreased to feedback channel quality indication (CQI) of all users in every subcarrier or chunk for adaptive orthogonal frequency division multiplexing (OFDM) systems. Thus numerous limited feedback schemes are proposed to reduce the system overhead. The recently proposed compressive sensing (CS) theory provides a new framework to jointly measure and compress signals that allows less sampling and storage resources than traditional approaches based on Nyquist sampling. In this paper, we proposed two novel CQI feedback schemes based on general CS and subspace CS, respectively, both of which could be used in a wireless OFDM system. The feedback rate with subspace CS is greatly decreased by exploiting the subspace information of the underlying signal. Simulation results show the effectiveness of the proposed methods, with the same feedback rate, the throughputs with subspace CS outperform the discrete cosine transform (DCT) based method which is usually employed, and the throughputs with general CS outperform DCT when the feedback rate is larger than 0.13 bits/subcarrier.

Signal Processing Logic Implementation for Compressive Sensing Digital Receiver (압축센싱 디지털 수신기 신호처리 로직 구현)

  • Ahn, Woohyun;Song, Janghoon;Kang, Jongjin;Jung, Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-446
    • /
    • 2018
  • This paper describes the real-time logic implementation of orthogonal matching pursuit(OMP) algorithm for compressive sensing digital receiver. OMP contains various complex-valued linear algebra operations, such as matrix multiplication and matrix inversion, in an iterative manner. Xilinx Vivado high-level synthesis(HLS) is introduced to design the digital logic more efficiently. The real-time signal processing is realized by applying dataflow architecture allowing functions and loops to execute concurrently. Compared with the prior works, the proposed design requires 2.5 times more DSP resources, but 10 times less signal reconstruction time of $1.024{\mu}s$ with a vector of length 48 with 2 non-zero elements.