• Title/Summary/Keyword: Compressive bending strength

Search Result 434, Processing Time 0.033 seconds

A Study on the Bending Strength of Internal Gear-With investigation of Stress State around Pitch Point- (내접치차의 굽힘강도에 관한 연구-피지점 부근의 응력상태 파악을 포함하여-)

  • 정태형;변준형;이청신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1126-1133
    • /
    • 1994
  • When designing an internal gear. the bending strength around pitch point as well as that at tooth root fillet should be considered because the bending stress around pitch point may occur as high as that at tooth root fillet. In this study, including stress state around pitch point, the bending strength (tensile side and compressive side) of internal gear tooth is investigated by the use of the finite element method(FEM) with regarding many influencing factors of cutter and gear geometries. Then, the critical sections around pitch point and at tooth root fillet are determined, and the simple formulae based on nominal stresses(bending, compressive, and shear) are derived for the calculations of actual stresses as the functions of tooth thicknesses and radii of curvatures of involute and fillet curve at those critical sections. The stresses calculated by the formulae agree well with those by the FEM. And the bending stresses around pitch point and at tooth root are easily estimated by the use of those formulae, therefore, those formulae are useful for the purpose of the design or the bending strength estimation of internal gear.

A Study on Properties of Mortar added with Admixtures (-혼화재(混和材)를 사용(使用)한 Mortar의 성질(性質)에 관(關)한 연구(硏究)-)

  • Kang, Sin Up;Kim, Seong Wan;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.257-264
    • /
    • 1975
  • This research was attempted as one of a study for investigating optimum contents of fly ash and briquette ash when they were used as admixtures. In mix designs of mortar, fly ash and briquette ash to cement, each of them, was mixed with 0, 5, 10, 15, 20, 25, 30 percent by weight of cement. They were tested for compressive strength, tension strength and bending strength, and these results were summarized as follows; 1. The compressive strength of mortar to add fly ash showed the maximum value at 25 percent. tension strength, 20 percent, bending strength, 15 percent. 2. In case of using briquette ash, compressive strength showed maximum strength at 15 percent. tension strength, 20 percent, bending strength, 20 percent. 3. To add fly ash showed in general more additive effect than to add briquette ash. 4. It was not only to excess standard strength but may be to develop as admixture when briquette ash was used around 20 percent.

  • PDF

The Strength Analysis of Gears on Hydro-Mechanical Continuously Variable Transmission for Forklift (지게차용 기계유압식 무단변속기의 기어류에 대한 강도해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Choi, Sung Kwang
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2016
  • The power train of a hydro-mechanical, continuously variable transmission for forklifts makes use of hydro-static units, hydraulic multi-wet disc brakes & clutches, and complex helical & planetary gears. The complex helical & planetary gears are very important parts of the transmission because of a strength problem. In the present study, we calculated the specifications of the complex helical & planetary gear train, and analyzed the gear bending and compressive stresses of the gears. It is necessary to analyze the gear bending and compressive stresses thoroughly for optimal design of the complex helical & planetary gears with respect to cost and reliability. In this paper, we analyze the actual gear bending and compressive stresses of complex helical & planetary gears using the Lewes & Hertz equation, and we also verify the calculated specifications of the complex helical & planetary gears by evaluating the results of the data of allowable bending and compressive stress using the Stress vrs Number of Cycles curves of gears.

Effects of the Curing Temperature on the Strength of Mortar added Admixtures (양생온도(養生溫度)가 혼화재(混和材)를 사용(使用)한 Mortar의 강도(强度)에 미치는 영향(影響))

  • Kang, Sin-Up;Kim, Seong-Wan
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.214-224
    • /
    • 1976
  • This research was attempted as one of studies on the strength of mortar added admixtures at different curing temperatures. Variations of curing temperature to. test compressive strength, tensil strength and bending strength were $20^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$ and these results were summarized as follow : In strength of mortar added briquette ash, the compressive strength was increased: 1.58 percent, the tensile strength 0.96 percent, and the bending strength 1.26 percent compared with standard strength, by increasing one degree of celsius temperature. Also in strength of mortar added fly ash, the compressive strength increased on the average 1.3 percent, the tensile strength 0.99 percent, and the bending strength 1.18 percent at the above conditions. In case of using fly ash as admixture, maximum compressive strengths was attained at the level of 25 percent of fly ash, maximum tensile strength at the level of 20 percent of fly ash, and maximum bending strength at the level of 20 percent of fly ash. In case of using briquette ash, maximum compressive strength was attained maximum strength at 20 percent of the admixture, maximum tensile strength at the level of 15 to 20 percent of admixture and maximum bending strength at the level of 20 percent of admixture. Although addition of briquette ash was less effective in increasing the strength compared with the addition of fly ash, briquette ash might be used as one of admixtures because the control of curing temperature might affect in getting the required practical strength.

  • PDF

Wood Quality and Growth of Alnus glutinosa (L.) Gaertn. in Korea - Compressive and Bending Strength Properties - (글루티노사오리나무의 생장과 재질 - 종압축 및 휨강도 -)

  • Jeong, Jae-Hun;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • Relationship between growth rate and wood quality was investigated by mechanical properties with Alnus glutinosa L. (24 years old) from 4 different origins of seeds (Bulgary, Italy, United Kingdom and Yugoslavia). Compression strength was in the range of $231{\sim}326kgf/cm^2$, and there was some differences among different origins of seed. Wood cultivated from the seeds of Italy, United Kingdom, and Bulgary showed higher growth rate and had lower compression strength and compression young's modulus. Wood from Yugoslavia seed had the fastest growth rate with higher strength than other three origins of seed. Bending strength was in the range of $426{\sim}727kgf/cm^2$, and there was some differences among the origin of seed. Higher growth rate wood showed higher bending strength and young's modulus than other woods. Trees cultivated from Yugoslavia seed had two times in diameter than other different origins of seeds, also have compressive strength, bending strength than other origins, which can be recommended as best cultivar in Alnus glutinosa L.

A Study on Bending, Compressive Strength of Mortar According to Temperature and Heating Time Change using Oyster Shell as Aggregate (굴 패각을 골재로 사용한 모르타르의 온도별 가열 시간에 따른 휨·압축 강도에 관한 연구)

  • You, Nam-Gyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.131-132
    • /
    • 2017
  • As the building is becomes bigger and larger, it can lead to big damage in case of fire. Also, tunnel, machine room and underground joint are spaces that can cause high temperature fire above 1,350℃ in case of fire. Therefore, a refractory material is need that can be withstand in high temperatures for long time. One side, the composition of oyster shell is CaCO3 of 90% or more. It is expected that it will be possible to use it as a high calcium natural material which is the material of the refractory board. According to, Study on bending, compressive strength of mortar according to temperature and heating time change using oyster shell as aggregate the most commonly occurring particle sizes form 2.5mm to 5mm.

  • PDF

A study on bending, Compressive Strength of Mortar According to Temperature and Heating Time Change using Classified Oyster shell as Aggregate (분급한 굴 패각을 골재로 사용한 모르타르의 가열 시간에 따른 휨·압축 강도에 관한 연구)

  • You, Nam-Gyu;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.122-123
    • /
    • 2017
  • As the building is becomes bigger and larger, it can lead to big damage in case of fire. Also, tunnel, machine room and underground joint are spaces that can cause high temperature fire above 1,350℃ in case of fire. Therefore, a refractory material is need that can be withstand in high temperatures for long time. One side, the composition of oyster shell is CaCO3 of 90% or more. It is expected that it will be possible to use it as a high calcium natural material which is the material of the refractory board. According to, Study on bending, compressive strength of mortar according to temperature and heating time change using classified oyster shell as aggregate.

  • PDF

An Experimental Study of Square High Strength Concrete Column Sections under Axial Compression and Biaxial Bending (축력과 이축휨을 받는 정사각형 단면의 고강도 콘크리트 기둥에 대한 실험적 연구)

  • 조문희;이종원;한경돈;유석형;반병열;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.35-40
    • /
    • 2001
  • The exact solution of strength of reinforced concrete RC columns subjected to axial compression combined with biaxial bending needs trial and adjustment procedure to find the depth and inclination of the neutral axis. Thus, approximate methods of analysis and design for biaxial bending are used in practice. Load contour interprets the relation of biaxial bending and equivalent uniaxial bending by u factor which is related to material properties and column shapes. The purpose of this study is to investigate the behavior of high strength RC columns subjected to the combined axial compression and biaxial bending. Fifteen test specimens with dimensions of 200mm$\times$200mm and 4-Dl3 longitudinal steel were examined. The variable of the test is compressive strength of concrete (350, 585, 650kgf/$cm^{2}$), compression load ratio (0.2$P_{o}}$, 0.35$P_{o}}$, 0.5$P_{o}}$), and inclination of loading ($\theta$=0, 22.5, $45^{\circ}$). Test results of coefficient $\alpha$ depending on the compressive strength of concrete are compared with ACI code.

  • PDF

Study of the Distribution Properties and LRFD Code Conversion in Japanese Larch

  • Park, Chun-Young;Pang, Sung-Jun;Park, Ju-Sang;Kim, Kwang-Mo;Park, Mun-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • This study was performed to develop an LRFD (Load Resistance Factored Design) Code for Domestic Larch. To accomplish his, we evaluated bending, compression, tension and shear strength. The results of the strength evaluation were utilized to verify the distribution and code conversion. For bending, tension and compressive strength, the Weibull distribution was well-fitted, but for shear strength we observed a normal distribution. For evaluating the bending and compressive strength, a full-sized specimen was used. A small clear specimen was used to test tension and shear strength. Compressive strength in particular was found to be affected by tight knots, although there was little difference between grades. In the code conversion, the design value of the LRFD was larger than the existing allowable stress value in the Korean Building Code. However, the allowable stress in this study was about two times higher than the value listed in the Korean Building Code. This result induced the difference between the soft and hard conversions. For greater reliability, the accumulation of additional data is necessary and further studies should be performed

A Study on Residual Strength of Carbon/Epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Quasi Static Indentation Damage (탄소섬유/에폭시 면재, 알루미늄 허니컴 코어 샌드위치 복합재 구조의 압입 손상에 의한 잔류강도 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Seoung-Hyun
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.24-29
    • /
    • 2009
  • This study aims to investigate the residual strength of sandwich composites with Al honeycomb core and carbon fiber face sheets after the quasi-static indentation damage by the experimental investigation. The 3-point bending test and the edge-wise compressive strength test were used to find the mechanical properties, and the quasi-static point load was applied to introduce the simulated damage on the specimen. The damaged specimens were finally assessed by the 3-point bending test and the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the quasi-static indentation. The both test results showed that the residual strength of the damaged specimen was decreased according to increases of the damaged depth.