• 제목/요약/키워드: Compressive behavior

검색결과 1,689건 처리시간 0.025초

인장/압축 하중 하에서 FEA를 이용한 굴곡진 보강섬유를 가진 두꺼운 복합재료의 강도예측에 관한 연구 (Strength Prediction of Thick Composites with Fiber Waviness under Tensile/Compressive Load Using FEA)

  • 류근수;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.129-132
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. The effects of fiber waviness on tensile/compressive nonlinear elastic behavior and strength of thick composite with fiber waviness are studied theoretically and experimentally. FEA(Finite Element Analysis) models are proposed to predict tensile/compressive nonlinear behavior and strength of thick composites. In the FEA models, both material and geometric nonlinearities were incorporated into the model using energy density, iterative mapping and incremental method. Also Tsai-Wu criteria was adopted to predict the strength of thick composites with fiber waviness. Tensile and compressive tests were conducted on the specimens with uniform fiber waviness. It was observed that the degree of fiber waviness in composites significantly affected the nonlinear behavior and strength of the composites

  • PDF

Mechanical behavior of recycled fine aggregate concrete after high temperature

  • Liang, Jiong-Feng;Wang, En;He, Chun-Feng;Hu, Peng
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.343-348
    • /
    • 2018
  • This paper reports mechanical behavior of recycled fine aggregate concretes after high temperatures. It is found that compressive strength of recycled fine aggregate concretes decline significantly as the temperature rises. The elastic modulus of recycled fine aggregate concretes decreases with the increase in temperature, and the decrease is much quicker than the decrease in compressive strength. The split tensile strength of recycled fine aggregate concrete decrease as the temperature rises. Through the regression analysis, the relationship of the mechanical behavior with temperature are proposed, including the compressive behavior, elastic modulus and split tensile strength, which are fitting the test data.

Workability and compressive behavior of PVA-ECC with CNTs

  • Lee, Dongmin;Lee, Seong-Cheol;Yoo, Sung-Won
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.311-320
    • /
    • 2022
  • TBM concrete segment requires a higher level of material properties compared to general concrete structures due to difficulties in maintenance and uncertainty in ground conditions. In this regard, recently, as one of the methods to achieve enhancement effect on concrete strength, many researchers have been focusing on adding CNTs to concrete mixture. However, even CNTs do not compensate the weakness that concrete exhibits brittle behavior after cracking. Separately, over the past few decades, a number of studies have been conducted on fiber reinforced concrete which exhibits ductile behavior due to fibers bridging cracks. However, only limited studies have been conducted to employ the advantages of the both materials together. In this study, an experimental program has been conducted to investigate the effect of CNTs on the workability and the compressive behavior of PVA-ECC which exhibits ductile tensile behavior with well-distributed cracks even without a conventional rebar. In addition to the compression test, SEM analysis has been also conducted for detailed investigation in the microstructure. The variable was the CNTs mix ratio, which were set to 0.00, 0.25, and 0.50 wt.% to the binding materials. It was observed though the test results that as the CNTs mix ratio increased, the workability considerably decreased with the reduced slump and slump flow. From the compression test results, it was also investigated that the compressive behavior was improved since the compressive strength, the strain corresponding to the compressive strength, and the modulus of elasticity increased with an increase of CNTs mix ratio. The contents of this paper will be useful for relevant research areas such as fiber reinforced concrete with CNTs which might be applied for high performance TMB concrete segments.

고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향 (Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect)

  • 이지훈;이경엽
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.

Micro-mechanical modeling for compressive behavior of concrete material

  • Haleerattanawattana, P.;Senjuntichai, T.;Limsuwan, E.
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.691-707
    • /
    • 2004
  • This paper presents the micro-mechanical modeling for predicting concrete behavior under compressive loading. The model is able to represent the heterogeneities in the microstructure up to three phases, i.e., aggregate particles, matrix and interfaces. The smeared crack concept based on non-linear fracture mechanics is implemented in order to formulate the constitutive relation for each component. The splitting tensile strength is considered as a fracture criterion for cracking in micro-level. The finite element method is employed to simulate the model based on plane stress condition by using quadratic triangular elements. The validation of the model is verified by comparing with the experimental results. The influence of tensile strength from both aggregate and matrix phases on the concrete compressive strength is demonstrated. In addition, a guideline on selecting appropriate tensile strength for each phase to obtain specified concrete compressive strength is also presented.

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

원형공을 갖는 암석의 압축강도 및 변형거동에 미치는 절리의 영향 (The influence of joints on compressive strength and deformation behavior of rock with a circular hole.)

  • 조의권;김일중;김기주;김영석
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.108-115
    • /
    • 1997
  • Uniaxial and biaxial compressive tests were conducted on limestone specimens containing artificial joints and a circular hole to investigate the influence of inclination and number of joints on compressive strength and deformation behavior of rock with a circular hole. Under uniaxial and biaxial compressive condition, the inclination of joints showing the maximum and minimum strength were 0$^{\circ}$ and 30$^{\circ}$ respectively, which was independent of the number of joints. Under uniaxial compressive condition, relative maximum strength of rock with n=1 and 3 to intact rock with a circular hole were 12.5%~82.8% and 11.4~62.5% respectively, and under biaxial compressive condition, 18.2~91.0% and 17.0~87.5% respectively. The influence of the number of joints on the decrease of compressive strength was greater under uniaxial than under biaxial compressive condition. Under uniaxial and biaxial compressive condition, axial and lateral deformations of rock showed the least values where $\alpha$=30$^{\circ}$. Under uniaxial compressive condition, axial and lateral deformation at maximum strength of rock have the increasing tendency with increase the number of joints. But they have the decreasing tendency under biaxial compressive condition. Under uniaxial and biaxial compressive conditions, axial deformation of circular hole was greater than lateral deformation without respect to the number of joints and the inclination of joints.

  • PDF

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.

The effect of active and passive confining pressure on compressive behavior of STCC and CFST

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.161-171
    • /
    • 2020
  • In this paper, an experimental study was conducted on the compressive behavior of steel tube confined concrete (STCC) and concrete-filled steel tube (CFST) columns with active and passive confinement. To create active confinement in the STCC and CFST specimens, an innovative method was used in this study, in which by applying pressure on the fresh concrete, the steel tube was laterally pretensioned and the concrete core was compressed simultaneously. Of the benefits of this technique are improving the composite column behavior, without the use of additives and without the need for vibration, and achieving high prestressing levels. To achieve lower and higher prestressing levels, short and long term pressures were applied to the specimens, respectively. Nineteen STCC and CFST specimens in three groups of passive, short-term active, and long-term active confinement were subjected to axial compression, and their mechanical properties including the compressive strength, modulus of elasticity and axial strain were evaluated. The results showed that the proposed method of prestressing the STCC columns led to a significant increase in the compressive strength (about 60%), initial modulus of elasticity (about 130%) as well as a significant reduction in the axial strain (about 45%). In the CFST columns, the prestressing led to a considerable increase in the compressive strength, a small effect on the initial and secant modulus of elasticity and an increase in the axial strain (about 55%). Moreover, increased prestressing levels negligibly affected the compressive strength of STCCs and CFSTs but slightly increased the elastic modulus of STCCs and significantly decreased that of CFSTs.