• Title/Summary/Keyword: Compressive Stress

Search Result 2,089, Processing Time 0.035 seconds

A study on residual stress distribution in surface grinding (평면연삭에서의 잔류응력 분포에 관한 연구)

  • 김경년;정재천;김기선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.109-118
    • /
    • 1991
  • In this study, it is intended to investigate the effect of the grinding conditions such as table feed, down feed, cross feed of residual stress distribution. And this distribution is investigated upon the grinding direction and the its orthogonal direction at ground layers. The material is used carbon steel (SM20C) which usually used to motor axis. And in order to be considered as Bernoulli-Euler beam, the dimension of the specimen is appropriately designed. According as corroiding the ground surface, the residual stress layers are removed and strain which occured on account of unbalance of internal stress is detected by rosette-gate. Through A/D converter and computer, these values are saved and evaluated residual stress by stress-strain relation formula. Finally, these results are diagrammatized with Auto Cad. The results obtained are as follows. As the depth from the ground surface increases in grinding direction and its orthogonal direction, tensile residual stress exists in the surface, and subsequently it becomes compressive residual stress as it goes downward. As the table feed, the cross feed and the down feed increase, maximum residual stress is transformed form the tensile to the compressive.

  • PDF

X-ray Diffraction Analysis of Residual Stress in Laminated Ceramic

  • Jin, Young-Ho;Chung, Dong-Yoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.458-462
    • /
    • 2011
  • The strength of ceramic was improved by lamination by suppressing the propagation of cracks with compressive residual stress in the face layer of the laminate. Hot pressed SiAlON+SiC/SiC/SiAlON+SiC laminate discs were fabricated for tailored residual stress. The residual stress in this laminate was studied by X-ray diffraction (XRD). There was considerable compressive residual stress in the face layer. A Finite Element Analysis (FEA) was performed to support the measured XRD results and to determine the stress field in the laminate. The residual stress measured by XRD had satisfactory agreement with the analytically calculated and FEA values. The measured value by XRD was -385 ${\pm}$ 20 MPa over most of the face layer. The calculated and FEA values were -386 MPa and -371MPa, respectively. FEA also showed significantly modified stresses and the maximum tensile stress near the edge region which are possible crack generators in the presence of flaws or contact damage.

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • Lee Ho-Jung;Chun Keyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.162-169
    • /
    • 2005
  • The functional external fixator system fur bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for the bone deformity. The FE model using the compressive and bending FE analysis was applied to the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm; the bending stiffness value in experiment was 259.74N/mm; compressive stiffness value in FEM was 188.67N/mm; bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • 전경진;이호중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1248-1251
    • /
    • 2004
  • The functional external fixator system for bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints in legs. The FE model using the compressive and bending FE analysis was applied the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm, the bending stiffness value in experiment was 259.74N/mm, compressive stiffness value in FEM was 188.67N/mm, bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Polymer Concrete (부재의 길이가 폴리머 콘크리트의 휨압축 강도에 미치는 영향)

  • 연규석;김남길;주명기;유근우;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper the influence or specimen length on flexural compressive strength and parameter or equivalent rectangular stress block of polymer concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to eccentric compression were tested using four different length-to-depth ratios(from 1.0, 2.0, 3.0 and 4.0) of specimens with compressive strength of 1,020kgf/cm$^2$. Results indicate that for the region of h/c$\leq$3.0 the reduction in equivalent rectangular stress block depth and flexural compressive strength with increase of length-to-depth ratios was apparent but for the region of h/c$\geq$3.0 they were nearly constant. It means that for the region of h/c$\geq$3.0 effect of specimen length on equivalent rectangular stress block depth and flexural compressive strength was negligible. It was also founded that the effect of specimen length on v, a coefficient of strength, that was from 0.84 to 0.86 regardless of h/c was petty. Finally, predictive equation is, suggested by using modified law of effect of specimen length and results.

  • PDF

Stress-strain relationships for steel fiber reinforced self-compacting concrete

  • Aslani, Farhad;Natoori, Mehrnaz
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.295-322
    • /
    • 2013
  • Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, toughness, energy absorption capacity and fracture toughness. Modification in the mix design of SCC may have a significant influence on the SFRSCC mechanical properties. Therefore, it is vital to investigate whether all of the assumed hypotheses for steel fiber reinforced concrete (SFRC) are also valid for SFRSCC structures. Although available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates material's mechanical properties. The present study includes: a) evaluation and comparison of the current analytical models used for estimating the mechanical properties of SFRSCC and SFRC, b) proposing new relationships for SFRSCC mixtures mechanical properties. The investigated mechanical properties are based on the available experimental results and include: compressive strength, modulus of elasticity, strain at peak compressive strength, tensile strength, and compressive and tensile stress-strain curves.

Analysis of actively-confined concrete columns using prestressed steel tubes

  • Nematzadeh, Mahdi;Haghinejad, Akbar
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.477-488
    • /
    • 2017
  • In this paper, an innovative technique for finite element (FE) modeling of steel tube-confined concrete (STCC) columns with active confinement under axial compressive loading is presented. In this method, a new constitutive model for the stress-strain relationship of actively-confined concrete is proposed. In total, 14 series of experimental STCC stub columns having active confinement were modeled using the ABAQUS software. The results obtained from the 3D model including the compressive strength at the initial peak point and failure point, as well as the axial and lateral stress-strain curves were compared with the experimental results to verify the accuracy of the 3D model. It was found that there existed a good agreement between them. A parametric study was conducted to investigate the effect of the concrete compressive strength, steel tube wall thickness, and pre-stressing level on the behavior of STCC columns with active confinement. The results indicated that increasing the concrete core's compressive strength leads to an increase in the compressive strength of the active composite column as well as its earlier failure. Furthermore, a reduction in the tube external diameter-to-wall thickness ratio affects the axial stress-strain curve and the confining pressure, while increasing the pre-stressing level has a negligible effect on the two.

Analysis of 3D Geometry and Compressive Behavior of Aluminum Open Cell Foam Using X-ray Micro CT (마이크로 X-ray CT를 활용한 알루미늄 개방형 폼의 형상 및 압축 거동 분석)

  • Kim, Y.I.;Kim, J.H.;Lee, J.K.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.518-523
    • /
    • 2011
  • The three dimensional geometries of an aluminum open cell foam before and after uniaxial compressive loading were investigated using the X-ray micro CT(computed tomography). Aluminum 6101-T6 open cell foams of 10, 20, 40 ppi (pore per inch) were considered in this work. After the serial sectioning CT images of aluminum foams were obtained from non-destructive X-ray images, the exact 3D structure were reproduced and visualized with commercial image processing program. The relative density ratio was around the 7.0 to 9.0 range, the unit cells showed anisotropic shapes having the different dimensional ratios of 1.1 to 1.3 between the rise and the transverse directions. The yield stress increased with the relative density ratio and the volumetric strain increased proportionally with compressive strain. The plateau stress in the compressive stress-strain curve was caused by the buckling of ligaments.

Development of a Functional Fixator System for Bone Deformity Near Joints

  • Chun, Keyoung-Jin;Lee, Ho-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.234-241
    • /
    • 2006
  • A functional external fixator system for bone deformity near the joints using worm gear was developed for curing the angle difference in fracture bones while the lengthening bar was developed for curing the differences in length, also in fracture bones. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints. The FE model using compressive and bending FE analysis was applied due to the angle differentiations. The results indicate that compressive stiffness value in the experiment was 175.43N/mm, bending stiffness value in the experiment was 259.74 N/mm, compressive stiffness value in the FEA was 188.67 N/mm, and bending stiffness value in the FEA was 285.71 N/mm. Errors between experiments and FEA were less than $10\%$ in both the 'compressive stiffness and the bending stiffness. The maximum stress (157 MPa) applied to the angle of the clamp was lower than the yield stress (176.4 MPa) of SUS316L. The degree of stiffness in both axial compression and bending of the new fixator are about 2 times greater than other products, with the exception of EBI (2003).

Compressive behavior of steel stirrups-confined square Engineered Cementitious Composite (ECC) columns

  • Zheng, Pan-deng;Guo, Zi-xiong;Hou, Wei;Lin, Guan
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.193-206
    • /
    • 2021
  • Extensive research has been conducted on the basic mechanical property and structural applications of engineered cementitious composites (ECC). Despite the high tensile ductility and high toughness of ECC, transverse steel reinforcement is still necessary to confine ECC for high performance. However, limited research has examined performance of ECC confined with practical amount of transverse reinforcement. This paper presents the results of axial compression tests on 14 square ECC columns and 4 conventional concrete columns (used as control specimens) with transverse reinforcement. The test variables were spacing, configuration (square ties or square and diamond shape ties), and yield strength of stirrups. The test showed that ECC columns confined with steel stirrup had good compressive ductility, and the stirrup spacing had the greatest effect on the compressive performance. The self-confinement effect of ECC results in a more uniform but slower expansion of the whole column compared with CC ones. The test results are then compared against the predictions from a number of existing models for conventional confined concrete. It is indicated that these models fail to predict the axial strains at peak axial stress and the trend of the stress-strain curve of steel stirrups-confined ECC with sufficient accuracy. Several new equations are then proposed for the compressive properties of steel-confined ECC based on test results and potential approaches for future studies are proposed.