• Title/Summary/Keyword: Compressional waves

Search Result 38, Processing Time 0.018 seconds

Compressional MHD wave transport in the boundary region between cold and hot plasmas

  • Park, Seong-Kook;Lee, Dong-Hun;Kim, Ki-hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.40-40
    • /
    • 2003
  • When the magnetotail is disturbed by an impulsive input such as the substorm onset, compressional magnetohydrodynamic (MHD) waves play an important role in delivering perturbed energy and exciting various wave modes and currents. The plasmasheet, in which relatively hot plasmas exist, is surrounded by relatively cold plasmas at the plasma sheet boundary layer (PSBL) and the equatorial plasmasphere. Since the Alfven speed significantly varies near these regions, the compressional waves are expected to undergo mode conversion by inhomogeneity at the boundary between cold and hot plasma regions. We investigate how the initial compressional MHD wave energy is reflected, transmitted, and absorbed across that boundary by adopting the invariant imbedding method (IIM) which gives the exact reflection, transmission, and absorption coefficients without any theoretical approximations for given frequencies and wave numbers. The IIM method is very useful in quantifying the reflection and transmission of compressional waves in the sense that we can calculate how much fast mode wave energy is delievered into shear Alfven waves or field-aligned currents. Our results show that strongly localized absorption occurs at the boundary region. This feature suggests that localized field-aligned currents can be impulsively excited at such boundary regions by any compressional disturbances, which is highly associated with impulsive auroral brightening at the substorm onset. We compare our results with previous studies in cold inhomogeneous plasmas.

  • PDF

Ultrasonic Evaluation of Worn Surface (초음파를 이용한 마멸표면 평가)

  • 안효석;김두인
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.233-239
    • /
    • 1999
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

  • PDF

Ultrasonic Evaluation of Worn Surface (초음파를 이용한 마멸표면 평가)

  • 안효석;김두인
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.351-356
    • /
    • 2000
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

Generalized Rayleigh wave propagation in a covered half-space with liquid upper layer

  • Negin, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.491-506
    • /
    • 2015
  • Propagation of the generalized Rayleigh waves in an initially stressed elastic half-space covered by an elastic layer is investigated. It is assumed that the initial stresses are caused by the uniformly distributed normal compressional forces acting on the face surface of the covering layer. Two different cases where the compressional forces are "dead" and "follower" forces are considered. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed and the elasticity relations of the materials of the constituents are described through the Murnaghan potential where the influence of the third order elastic constants is taken into consideration. The dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results for the dispersion of the generalized Rayleigh waves on the influence of the initial stresses and on the influence of the character of the external compressional forces are presented and discussed. These investigations provide some theoretical foundations for study of the near-surface waves propagating in layered mechanical systems with a liquid upper layer, study of the structure of the soil of the bottom of the oceans or of the seas and study of the behavior of seismic surface waves propagating under the bottom of the oceans.

Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing (동결에 따른 모래-실트 혼합토의 탄성파 특성)

  • Park, Junghee;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.

Non-Destructive Detection of Hertzian Contact Damage in Ceramics

  • Ahn, H.S.;Jahanmir, S.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.114-121
    • /
    • 1995
  • An ultrasonic technique using normal-incident compressional waves was used to evaluate the surface and subsurface damage in ceramics produced by Hertzian indentation. Damage was produced by a blunt indenter (tungsten carbide ball) in glass-ceramic, green glass and silicon nitride. The damage was classified into two types; (1) Hertzian cone crack, in green glass and fine grain silicon nitride, and (2) distributed subsurface micro fractures, without surface damage, produced in glass ceramic. The ultrasonic technique was successful in detecting cone craks. The measurement results with the Hertzian cone cracks indicated that cracks perpendicular to the surface could be detected by the normal-incident compressional waws. Also shown is the capability of normal-incident compressional waves in detection distributed micro-sized cracks size of subsurface microfractures.

Stiffness Characteristics according to Salt Cementation (소금 고결화에 따른 강성 특성)

  • Eom, Yong-Hun;Truong, Q. Hung;Yoo, Joung-Dong;Byun, Yong-Hoon;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.255-264
    • /
    • 2009
  • Soils containing vanishing materials lead changes in the microstructure of particulate media due to water inflow. Thus, dissolution renders some local unstability. As the moisture contents decease, the component of the vanished materials may affects on the cementation of paniculate materials. This cementation phenomenon has a huge influence on the stiffness, strength and stability under lower stress level. The goal of this study is to introduce the cementation effects on a compressional wave velocity, a shear wave velocity, and the resonant frequency of shear waves. The glass bead and salt water with different mole contents are used. Test results show that the changes of shear and compressional wave velocities consist of three stages. In the first region, compressional wave velocities increase and shear wave velocities decrease with a decreases in reducing water contents from 100% to 90~95%. In the second region, shear and compressional wave velocities become stable at 90~95% to 10% of the water contents. In the third region, shear and compressional wave velocities increases dramatically with a decrease in the water content due to the capillary force and cementation of salt. Furthermore, the resonant frequency of the shear waves shows similar phenomenon. Specimens prepared by glass beads and salt water are proved to be able to provide a meaningful insight in under structural behaviors of the cementation.

  • PDF

Variation in Characteristics of Elastic Waves in Frozen Soils According to Degree of Saturation (포화도에 따른 동결토의 탄성파 특성 변화)

  • Park, Jung-Hee;Kang, Min-Gu;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1063-1075
    • /
    • 2013
  • The strength of frozen soils is one of the significant design parameters for the construction in frozen ground. The properties of frozen soils should be investigated to understand the strength of frozen soils. The objective of this study is to figure out the characteristics of elastic waves in frozen soils, which reflect the constituent and physical structure of frozen soils in order to provide fundamental information of those according to the degree of saturation. Freezing cell is manufactured to freeze specimens, which are prepared with the degree of saturation of 10%, 40%, and 100%. Piezo disk elements are used as the compressional wave transducers and Bender elements are used as the shear wave transducers. While the temperature of specimens changes from $20^{\circ}C$ to $-10^{\circ}C$, the velocities, resonant frequencies and amplitudes of the compressional and shear waves are investigated based on the elastic wave signatures. Experimental results reveal that the elastic wave velocities increase as the degree of saturation increases. The variation of resonant frequencies coincide with that of elastic wave velocities. A marked discrepancy in amplitudes of compressional and shear waves are observed at the temperature of $0^{\circ}C$. This study renders the basic information of elastic waves in frozen soils according the degree of saturation.

THEMIS Pi2 observations near dawn and dusk sectors in the inner magnetosphere

  • Kwon, Hyuck-Jin;Kim, Khan-Hyuk;Lee, Dong-Hun;Takahashi, K.;Park, Young-Deuk;Bonnell, J.W.
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.40.3-40.3
    • /
    • 2010
  • The most frequently suggested source for Pi2 pulsations in the inner magnetosphere (L < 4) is standing fast-mode waves trapped in the plasmasphere (i.e., plasmaspheric resonances). They have been considered as the source of low-latitude Pi2 pulsations. The plasmaspheric resonance model suggests that compressional fast-mode waves can be detected at all local times inside the plasmasphere provided reflection of the wave energy is efficient. Until now, however, there are no reports about compressional Pi2s observed in the dayside inner magnetosphere. That is, there is longitudinal limit of inner magnetosphere. In February 2008, THEMIS probes were near dawn and/or dusk sides, which are the transition regions between the nightside and dayside, in the inner magnetosphere (L = 2-4) when low-altitude Pi2s were identified at Bohyun (L = 1.35) station in Korea. Using the THEMIS electric field data, we examined if Pi2s are excited by longitudinally localized disturbances. We found that compressional Pi2s having high coherence with a low-latitude Pi2 pulsation occur on dawnside. However, any compressional pulsations in the Pi2 frequency band were not detected on duskside. This indicates that compressional Pi2s disappear near the duskside. Our observations are discussed with spatial plasmaspheric structure and possible Pi2 mechanisms.

  • PDF

Void Ratio Evaluation of Unsaturated Soils by Compressional and Shear Waves (압축파와 전단파를 이용한 불포화토의 간극비 산정)

  • Byun, Yong-Hoon;Cho, Se-Hyun;Yoon, Hyung-Koo;Choo, Yun-Wook;Kim, Dong-Su;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.41-51
    • /
    • 2012
  • Soils are commonly unsaturated in the near surface. The stiffness of soils is affected by the amount of air and water. The objective of this study is to evaluate the porosity of the unsaturated soils by using the elastic waves including compressional and shear waves. The elastic waves are measured at different degrees of saturation by controlling the matric suction. Thus, the unsaturated soils are characterized at different levels of the matric suction. Shear and compressional waves are measured by using the bender elements and the piezo disk elements, respectively. Both transducers are installed on the walls of the rectangular cell. The unsaturated soils are prepared by using uniform size sands and silts. Test results show that both compressional and shear wave velocities change according to the matric suction. The elastic modulus, the shear modulus, and the Poisson's ratio are estimated based on the measured elastic wave velocities. In addition, the void ratio of the unsaturated soils estimated using elastic wave velocities matches well with the volume based void ratio. This study demonstrates that the elastic waves can be effectively used for the characterization of unsaturated soils.