• 제목/요약/키워드: Compression-Ignition Engine

검색결과 290건 처리시간 0.022초

바이오디젤 연료 압축착화 엔진의 당량비 변화가 연소 및 배출물특성에 미치는 영향 (Effect of Equivalence Ratio on the Combustion Characteristics in a CI Engine Fueled with Biodiesel)

  • 강민구;권석주;차준표;임영관;박성욱;이창식
    • 한국연소학회지
    • /
    • 제16권3호
    • /
    • pp.52-58
    • /
    • 2011
  • The purpose of this paper is to investigate the effect of equivalence ratio on the combustion and emission characteristics of a compression ignition engine fueled with biodiesel. In this research, a single-cylinder direct injection engine with 373.3 cc of displacement volume was tested on DC dynamometer. In order to investigate the effect of biodiesel equivalence ratio on combustion characteristics, the experiments were conducted at various equivalence ratios and injection pressures of 40~120 MPa. For investigating engine performance, lambda meter was connected and equivalence ratios was varied from 0.6 to 1.0. In addition, the exhaust emissions such as oxides of nitrogen($NO_X$), hydrocarbon(HC) and carbon monoxide(CO) were measured by exhaust gas analyzer under the various air/fuel ratios. The experimental results show that maximum IMEP was measured at the 0.8 of equivalence ratio. Furthermore, $NO_X$ emission was rapidly decreased as the increase of equivalence ratio. However soot emission was significantly increased according to the increase of equivalence ratio.

디젤기관에서 바이오디젤 연료가 배기배출물 특성에 미치는 영향(대두유를 중심으로) (Effects of Biodiesel Fuel on Exhaust Emission Characteristics in Diesel Engine(Using Soybean Oil))

  • 임재근;최순열;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.27-32
    • /
    • 2008
  • Recently, we have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodisel was produced from soybean oil at our laboratory. This study showed that Soot and CO emission were decreased as the blending ratios of biodiesel to diesel oil increased, on the other hand NOx emission was slightly increased because of the oxygen content in biodiesel. Also, the biodiesel blends yielded slightly higher specific fuel consumption than that of diesel oil because of lower heating value of biodiesel.

예혼합 압축착화 디젤엔진의 분사시기 변화에 따른 혼합기 형성 과정 및 연소 특성에 관한 연구 (A Study on the Mixture Formation Process and Combustion Characteristics According to Injection Timing in Premixed Charge Compression Ignition)

  • 조병호;한용택;이기형;이창식
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1692-1698
    • /
    • 2002
  • A diesel engine has various merits such as high thermal-efficiency, superior fuel consumption and durability. Therefore the number of diesel engine in the world is increasing. As the seriousness of environmental pollution increases in the world, the method to reduce the noxious materials of $CO_2$, NOx and P.M. is very important subject to correspond to exhaust gas regulations. A new concept, so called premixed charge diesel combustion(PCCI), is focused among the various corresponding manners. In this study, we investigated the mixture formation within the cylinder with injection timing using GTT simulation code and also compared combustion characteristics of PCCI engine with that of commercial diesel engine. From this experiments, it could be found that homogeneous mixture formation was observed according to advance of injection timing and simultaneous reduction of NOx and Soot in injection timing of BTDC 60$^{\circ}$.

DPIV와 엔트로피 해석방법을 이용한 가시화 엔진내의 유동 특성 및 성층효과에 관한 실험적 연구 (An Experimental Study on the Flow Characteristics and the Stratification Effects in Visualization Engine Using the DPIV and the Entropy Analysis)

  • 이창희;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.9-18
    • /
    • 2005
  • The objective of this study is to analyse the spray characteristics according to the injection duration under the ambient pressure condition, and the injection timing in the visualization engine. In order to investigate the spray behavior, we obtained the spray velocity using the PIV method that has been an useful optical diagnostics technology, and calculated the vorticity from spray velocity component. These results elucidated the relationship between vorticity and entropy which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion rate of spray using the entropy analysis based on the Boltzmann's statistical thermodynamics. Using these method, it was found that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation. We also found that the homogeneous diffusion rate increased as the injection timing moved to the early intake stroke process and BTDC $50^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.

Wiebe 燃燒函數에 의한 디이젤機關 의 燃燒騷音低減 에 관한 硏究 (A Study for Reduction of Combustion Noise in Diesel Engine by Wiebe's Combustion Function)

  • 이성노;궁본등;촌산정;노상순
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.548-554
    • /
    • 1985
  • 본 논문에서는 디이젤기관의 연소소음의 저감을 최종목표로 하여 Wiebe의 연 소함수에 의해 근사시킨 열발생속도의 변화가 디이젤기관의 연소소음 및 도시열효율에 미치는 영향에 관하여 수치실험을 통하여 해석검토하였다.

경유연료의 세탄가, 유도세탄가 및 세탄지수의 상관관계 분석 (Determination of Correlation between Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel)

  • 전화연;김지연;김신;임의순
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1134-1144
    • /
    • 2018
  • 세탄가는 경유의 품질기준 중 하나로써 디젤엔진에 사용되는 경유 연료의 착화성을 평가하는 항목이다. 세탄가 기준은 현재 자동차용 경유 기준으로 52 이상이며, 일반적으로 세탄가가 높으면 시동성이 좋고 운전이 원활해지나 지나치게 높으면 연소가 불균일해져 매연의 원인이 되고 연료소비량이 증가한다. 현재 국내의 품질시험방법에 규정되어있는 세탄가 측정방법은 CFR엔진을 이용한 세탄가분석, 경유의 밀도와 증류유출온도를 통하여 세탄가를 산출하는 세탄지수, CFR엔진의 단점을 보완하여 고온에서 연료의 연소되는 시간을 통해 세탄가를 측정하는 유도세탄가 등이 있다. 본 연구는 이러한 세탄가를 정유사별, 하 동절기별 시료를 확보하고 이를 분석하여 다양한 인자들에 의한 세탄가 측정방법의 상관관계에 대하여 분석하였다. 이를 통하여 세탄가, 유도세탄가, 세탄지수 순으로 세탄가가 높게 측정 되는 것을 확인하였고, 이를 통하여, 현재 편의성을 이유로 많이 사용되는 세탄지수로 인하여 세탄가 품질미달이 발생할 수 있기 때문에 이에 대한 추가 연구가 필요할 것으로 보인다.

급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구 (Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-Particles in RCM)

  • 안형진;;백승욱
    • 한국연소학회지
    • /
    • 제21권2호
    • /
    • pp.7-14
    • /
    • 2016
  • Evaporation and combustion characteristics of fuel droplet with carbon nanoparticle were investigated in a rapid compression machine(RCM). RCM is an experimental equipment to simulate one compression stroke of reciprocating engine. Nitrogen was charged into reaction chamber for evaporation experiment, while oxygen was charged for combustion experiment. N990 carbon black and n-heptane were used to synthesize the carbon nanofluids. Surfactant, span80, was used to make synthesis easier. The droplet pictures were taken using a high speed camera with 500 frames per second. Thermocouple, of which tip is $50{\mu}m$, was used not only to measure transient bulk temperature, but also to suspend the droplet. Reaction chamber temperature was calculated from pressure data. The evaporation rate of nanofluids was improved compared to pure fuel. The ignition delay was promoted due to the nanoparticle, but the burning rate was decreased.

디젤엔진의 부분 예혼합 연소 및 배기 특성에 대한 분사전략의 영향 (Effects of Injection Strategies on the Partial Premixed Charge Combustion and Emission Characteristics in a Diesel Engine)

  • 김재웅;김영진;박상기;이기형
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.83-88
    • /
    • 2013
  • Recently, PCCI (premixed charge compression ignition) combustion is studied to reduce both NOx and PM because of homogeneous mixture formation and lower combustion temperature. It has also merit of increasing thermal efficiency owing to better air-fuel mixure. However, it is well known that PCCI combustion has a weakness in fuel economy because PCCI combustion tends to start before TDC. Therefore, it is necessary to find an optimal conditions for PCCI combustion which maintains reduction of NOx, PM and increase of thermal efficiency. In this study, pPCCI combustion was realized by adding early injection strategy to a conventional diesel engine. In addition, the characteristics of pPCCI combustion was analized by comparing conventional diesel injection strategy. The results show that NOx and PM per power in pPCCI combution were reduced compared to a conventional diesel combustion.

온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구 (Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis)

  • 정동원;권오석;백영순;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.