• Title/Summary/Keyword: Compression volume ratio

Search Result 135, Processing Time 0.025 seconds

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

A Study on the Theoretical Analysis and Optimal Design Conditions for the $\alpha$ type Stirling Engine ($\alpha$형 스터링 엔진의 최적 설계 조건)

  • 강문규;이택희;유재환
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.142-154
    • /
    • 1998
  • A stirling engine is a mechanism used to convert heat to power and operates on a closed regenerative thermodynamic cycle with compression and expansion of the working fluid at different temperature. The performance of a stilting cycle machine is a function of six independent parameters, namely; (1) speed N(r.p.m), (2) pressure of the working fluid p(Pa), (3) ratio of the temperature in the compression and expansion space ${\tau}(=T_C/T_E)$ , (4) ratio of the swept volumes in these two spaces K, (5) phase angle $\alpha$ and (6) dead volume ratio X. This paper describes the procedure and presents the results of computations carried out to establish the optimum combinations of these six parameters for maximum engine output for the machine acting as a prime mover, over a combined temperature range from $300^{\circ}K$ to $1000^{\circ}K$ and dead volume ratio X ranging from 0.1 to 2.0. The output of a stilting cycle machine can be expressed in terms of nondimensional power in several different ways. Four methods were studied in detail, the parameters optimized and design charts and engine power charts prepared. The results of this paper may be useful as a guide to the likely effects on the performance of some of the important design parameters and regenerator design.

  • PDF

Mechanical Properties and Modeling of Amorphous Metallic Fiber-Reinforced Concrete in Compression

  • Dinh, Ngoc-Hieu;Choi, Kyoung-Kyu;Kim, Hee-Seung
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.221-236
    • /
    • 2016
  • The aim of this paper is to investigate the compressive behavior and characteristics of amorphous metallic fiber-reinforced concrete (AMFRC). Compressive tests were carried out for two primary parameters: fiber volume fractions ($V_f$) of 0, 0.3, 0.6 and 0.8 %; and design compressive strengths of 27, 35, and 50 MPa at the age of 28 days. Test results indicated that the addition of amorphous metallic fibers in concrete mixture enhances the toughness, strain corresponding to peak stress, and Poisson's ratio at high stress level, while the compressive strength at the 28-th day is less affected and the modulus of elasticity is reduced. Based on the experimental results, prediction equations were proposed for the modulus of elasticity and strain at peak stress as functions of fiber volume fraction and concrete compressive strength. In addition, an analytical model representing the entire stress-strain relationship of AMFRC in compression was proposed and validated with test results for each concrete mix. The comparison showed that the proposed modeling approach can properly simulate the entire stress-strain relationship of AMFRC as well as the primary mechanical properties in compression including the modulus of elasticity and strain at peak stress.

An Experimental Study on the Combustion and Nanoparticle Emission Characteristics of Gasoline-diesel Fuel in a Premixed Charge Compression Ignition Engine (예혼합 압축착화 엔진에서 가솔린-디젤 연료의 연소 및 극미세입자 배출 특성에 관한 실험적 연구)

  • Yoon, Seung-Hyun;Lee, Doo-Jin;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • The aim of this work was to investigate the combustion and nanoparticle emission characteristics of premixed charge compression ignition (PCCI) combustion at various test conditions using a single cylinder common-rail diesel engine. In order to create the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber during the intake process and then the diesel fuel was directly injected into the combustion chamber as an ignition source for the gasoline premixture. From these results, it revealed that the ignition delays and combustion durations were gradually prolonged and the peak combustion pressure were increased because diesel fuel was injected early injection timing with the increase of premixed ratio. In addition, as the increase of premixed ratio, total particle number is generally decreased and particle volume also indicated low levels at the direct injection timing from BTDC $20^{\circ}$ to TDC. At further advanced injection timing, total particle number and volume were generally increased

The Study on the Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 다량 사용한 콘크리트의 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.169-176
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment, cold weather environment of curing temperature $5^{\circ}C$. Flash concrete tested slump, air contest, setting and Hardening concrete valuated setting period of form, day of age 3, 7, 28 compression strength in sealing curing. Underwater curing specimen compression strength of age 3. 7, 28day used strength change accordingly fly-ash concrete curing temperature. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Setting test result, fly-ash ratio of replacement higher delay totting time. Same volume of fly-ash ratio of replacement is lower fly-ash ratio of replacement fine aggregate delay setting time. Setting test in curing temperature $35^{\circ}C$ over twice fast setting in curing temperature $20^{\circ}C$ and all specimen setting delay in curing temperature $5^{\circ}C$. F40 specimen end of setting about 30 time. (2) Experiment result age 28day compression strength more fisher plan concrete then standard environment in curing temperature $20^{\circ}C$, cold weather environment in curing temperature $5^{\circ}C$, most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$ replacement binder 25%, fine aggregate 15%. (3) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

Experimental Study on the Triaxial Compressive Behaviour of Unsaturated Soil (불포화토의 삼축압축거동에 관한 실험적 연구)

  • Kim, Young-Seok;Oka, Fusao;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1224-1227
    • /
    • 2006
  • It has been recognized unsaturated soil behaviour playing an important role in geomechanics. Up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter (i.e. non-contactable transducer) during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. The measurement of volume changes were performed with 0.5% of the maximum error under the axial strain ratio of less than 10%. The experimental results have revealed that the mechanical behaviour of unsaturated soil can be significantly affected by the matric suction. During the shearing processes, the level of maximum deviator stress under the initial suction pressure of 50kPa was higher than that under the initial suction pressure of 10kPa. On the other hand, the volume changes became smaller under the increase in the initial suction pressure.

  • PDF

Strength Characteristics of Light-Weighted Soils Mixed with EPS and Dredged Soils (준설토와 EPS를 혼합한 경량혼합처리토의 강도 특성)

  • 김수삼;김병일;한상재;신현영
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2002
  • Recycling of dredged soils as construction materials is experimently discussed in this paper. The strength of light-weighted soils(LWS) consisting of expanded polystyrene(EPS), dredged soils and cement is characterized by uniaxial and triaxial compression tests with varying initial water contents of dredged soils, the EPS volume and cement contents, and expanded ratio of EPS. Test results show that the strength of light-weighted soils increases with adding cement contents, whereas the strength increases with decreasing initial water contents of dredged soils and expanded ratio of EPS. It was, however, found that increasing the EPS volume makes a lower the strength of light-weighted soils.

Seismic performance and damage evaluation of concrete-encased CFST composite columns subjected to different loading systems

  • Xiaojun Ke;Haibin Wei;Linjie Yang;Jin An
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.121-134
    • /
    • 2023
  • This paper tested 11 concrete-encased concrete-filled steel tube (CFST) composite columns and one reinforced concrete column under combined axial compression and lateral loads. The primary parameters, including the loading system, axial compression ratio, volume stirrup ratio, diameter-to-thickness ratio of the steel tube, and stirrup form, were varied. The influence of the parameters on the failure mode, strength, ductility, energy dissipation, strength degradation, and damage evolution of the composite columns were revealed. Moreover, a two-parameter nonlinear seismic damage model for composite columns was established, which can reflect the degree and development process of the seismic damage. In addition, the relationships among the inter-story drift ratio, damage index and seismic performance level of composite columns were established to provide a theoretical basis for seismic performance design and damage assessments.

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Basic Study on the Regenerator of Stirling Engine (I) -The influence of the heat exchange effectiveness of the regenerator on the engine power- (스털링기관용 재생기에 관한 기초연구(I) -재생기의 열교환 유효도가 기관 출력에 미치는 영향-)

  • 김태한;이정택;이시민
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • The indicated power of Stirling engine was affected by the heat exchange effectiveness of the regenerator. The temperature difference of working fluid between the expansion and the compression space of Stilting engine depends on the heat exchange effectiveness of the regenerator. The influence of the temperature ratio of expansion space to compression space of Stirling engine on the indicated power was analyzed by using Schmidt analysis in this study. In the Stirring engine, as the temperature ratio increased, the indicated power generally decreased. Therefor, it is necessary to develope the regenerator of high effectiveness. The actual indicated power was shown 64.9 percent of the predicted indicated power in maximum and 47.2 percent of that in minimum due to increased dead volume of engine, the loss of flow friction and heat transfer in the regenerator.