• Title/Summary/Keyword: Compression member

Search Result 223, Processing Time 0.02 seconds

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Axial compressed UHPC plate-concrete filled steel tubular composite short columns, Part I: Bearing capacity

  • Jiangang Wei;Zhitao Xie;Wei Zhang;Yan Yang;Xia Luo;Baochun Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.405-421
    • /
    • 2023
  • An experimental study on six axially-loaded composite short columns with different thicknesses of steel tube and that of the concrete plate was carried out. Compared to the mechanical behavior of component specimens under axially compressed, the failure modes, compression deformation, and strain process were obtained. The two main parameters that have a significant enhancement to cross-sectional strength were also analyzed. The failure of an axially loaded UHPC-CFST short column is due to the crushing of the UHPC plate, while the CFST member does reach its maximum resistance. A reduction coefficient K'c, related to the confinement coefficient, is introduced to account for the contribution of CFST members to the ultimate load-carrying capacity of the UHPC-CFST composite short columns. Based on the regression analysis of the relationship between the confinement index ξ and the value of fcc/fc, a unified formula for estimating the axial compressive strength of CFST short columns was proposed, combined with the experimental results in this research, and an equation for reliably predicting the strength of UHPC-CFST composite short columns under axial compression were also proposed.

Strength Evaluation of RC Beams Using Grid Strut-Tie Models (격자 스트럿-타이 모델을 이용한 철근콘크리트 보의 강도평가)

  • Yun Young Mook;Lee Won Seok;Kim Byung Hun;Jung Chan Heak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.540-543
    • /
    • 2004
  • In this study, the validity of the grid softened strut-tie model method suggested for concrete member analysis is examined through the ultimate strength evaluation of the reinforced concrete beams. The evaluated results of ultimate strength by the grid softened strut-tie model method were compared with those by the ACI 318-02 and the modified compression field theory, and European codes.

  • PDF

Comparison on the Behavior according to Shapes of Tension Web member in gap K-joints in Cold-formed Square Hollow Sections (인장웨브재 형태에 따른 각형강관 갭K형 접합부의 거동 비교)

  • Jeong, Sang Min;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.561-568
    • /
    • 2005
  • The object of this paper is to determine appropriateness for use of high-strength tensile bar as a tension web member. The gap K-joint of tensile bar types were compared with gap K-joint of square hollow section (SHS) types. For the same width-to-thickness ratio ($2{\gamma}=33.3$ ), tests were performed on four specimens of the SHS type and eight specimens of the tensile bar type. The comparison of capacity with the experimental results showed a capacity of the SHS type joint to be higher than that of the tensile bartype joint for the same brace-to-chord width ratio. Moreover, the capacity of the SHS type joints increased proportionally to the width ratio ${\beta}$), while tensile bar type joints increased as the tension width ratio (${\beta}2$). In failure mode, SHS-type specimens showed local buckling of the compression brace and plastic failure was observed between the tension brace and chord face, and with the tensile bar type specimens there appeared punching shear failure of the chord face at the toe of the connection plate. It is, therefore, concluded that width-to-thickness ratio should be lower than that of the hollow-section type and the relation between tension and compression width ratio should be considered.

An Experimental Study on the Behavior of Curved Panel Parts Using Composite Materials (복합소재를 활용한 곡면 패널의 부재단위 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.474-480
    • /
    • 2018
  • FRP is a new material that is lightweight, has high strength and high durability, and is emerging as a third construction material in many countries. The composite material panel targeted in this study was a curved member and is the most frequently used arch-shaped member of a structures, such as tunnels. Composite curved panels can be produced in high quality and large quantities through automation operations. On the other hand, the frequency of application is low, and the design criteria and experimental data are lacking. Therefore, this study examined the mechanical performance of the member unit first to verify its performance as structural members of the FRP curved panel. For this purpose, tensile, compression, and connection performance tests were carried out. The tensile tests showed greater tensile strength of specimens with larger curvature, and the compression tests showed that the composite section of a composite material has greater compressive strength than the concrete section. Finally, the test of the performance of the connection showed that the attachment performance of the connection was more than equal to that of the FRP composite material panel.

Behavior and Capacity of Compression Lap Splice in Confined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 있는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.389-400
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement and bar size on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. The results of the tests with bar diameters of 22 and 29 mm show that there is no size effect of bar diameter on compression lap splice. Bond strength of small bar diameter may increase. However, large diameters of re-bars are used in compression member and the size effect of re-bars does not have to be considered in compression lap splice. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond. Because the stresses developed by bond in compression splice with transverse reinforcement are nearly identical to or less than those in tension splice with same transverse reinforcement, strength increment of compression splice is attributed to end bearing only.

Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib (리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동)

  • Han, Sang Whan;Yeo, Seung Min;Kim, Wook Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.53-62
    • /
    • 2005
  • The purpose of this study is to improve the seismic behavior of the bracing members. Lee and Goel's (1987) concrete filling in the hollow structural section (HSS) reduced the severity of local buckling and increased the fracture life. However, concrete filling in the HSS did not prevent the occurrence of local buckling in the midsection of the bracing member, which resulted in continuous strength degradation. This study investigated the seismic behavior of the concrete-filled HSS bracing member, which is reinforced by ribs in the midsection of the bracing member. The main variable of the specimens is rib length. The test results showed that buckling mode, cyclic compression strength, and energy dissipation capacity of the bracing members were affected by rib length. Specimen reinforced with ribs with a length of 63% had better structural performance.

Effect of Tension, Compression and Lateral Reinforcement In Ductility Ratio in RC Flexural Members (철근콘크리트 휨 부재에서 인장, 압축 및 횡보강근이 연성률에 미치는 효과)

  • 연규원;박찬수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.553-560
    • /
    • 2001
  • The ductility capacity should be estimated for inelastic analysis and design of reinforced concrete flexural members. Therefore, to estimate the ductility capacity, the model of moment-curvature relationship of reinforced concrete flexural member is assumed in this study. The curvature, rotation, and displacement(deflection) of reinforced concrete cantilever beams are analyzed and tested. The analytical results are compared with the test results. According to the analytical and test results, the assumed model of moment-curvature relationship in this study is adequate in flexural analysis of reinforced concrete members because the analytical results are well agreed with the test results, and it is resonable to express the ductility capacity in the rotation or displacement ductility, Because the curvature ductility is the limited index in a certain section. It is investigated that the ductility capacity is proportional to lateral reinforcement and compression reinforcement and inversely proportional to tension reinforcement.

Structural Behavior of Flexurally Reinforced FRP-Concrete Composite Compression Member with FRP (FRP로 휨보강된 FRP-콘크리트 합성압축재의 구조적 거동)

  • Park, Joon-Seok;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.10-16
    • /
    • 2010
  • In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.

  • PDF

Energy Dissipation Demand of Braces Using Non-linear Dynamic Analyses of X-Braced Frame (비선형 동적 해석을 통한 X형 가새골조 내 가새 부재의 에너지 소산)

  • Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.379-388
    • /
    • 2003
  • The response of single story buildings and other case studies were investigated to observe trends and develop a better understanding of the impact of some design parameters on the seismic response of Concentrically Braced Frames (CBF). While many parameters are known to influence the behavior of braced frames, the focus of this study was mostly on quantifying energy dissipation in compression and its effectiveness on seismic performance. Based on dynamic analyses of single story braced frame and case studies, a bracing member designed with bigger R and larger KL/r was found to result in lower normalized cumulative energy ratio in both cases.