• Title/Summary/Keyword: Compression die

Search Result 151, Processing Time 0.026 seconds

Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs (마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석)

  • Kang, Jeong-Eun;Yoo, Ji-Yoon;Choi, In-Kyu;YU, Jae Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

Evaluation of Physical Properties as Magnesium Stearate Blendedin Hydrophilic Matrix Tablets

  • Choi, Du-Hyung;Jung, Youn-Jung;Wang, Hun-Sik;Yoon, Jeong-Hyun;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Main objectives of this study were to investigate the effects of a lubricant, magnesium stearate, as blended in a hydrophilic matrix tablet and to identify significant factors using a tablet ejection force and a swelling property. The characteristics of tablet ejection were evaluated with three different compression forces (30, 40, and 60 MPa) and two controlled factors, amount of magnesium stearate and its mixing time. A hydrophilic model drug (terazosin HCl dihydrate) was regarded as a default factor. Tablet swelling was also evaluated. The optimal amount of PEG compared to PEO was set to be 88.50% w/w. As the amount of magnesium stearate was varied from 0.79% to 2.20% w/w, the amount of PEO and PEG was adjusted to meet the tablet's total weight while maintaining the ratio between the two excipients constant. As the mixing time of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased. As the amount of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased since the increased mixing time and the amount of magnesium stearate induced hydrophobic properties of the matrix tablet more effectively. The ejection force of the tablet increased as a result of increase in the compression force, which means that the breaking of tablet/die-wall adhesion energy was also increased when the compression energy was increased. The results gavea valuable guide how to choose suitable amount of the lubricant with processing conditions for the development of hydrophilic matrix formulations.

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF

A Numerical Study on the Effect of Initial Shape on Inelastic Deformation of Solder Balls under Various Mechanical Loading Conditions (다양한 기계적 하중조건에서 초기 형상이 솔더볼의 비탄성 변형에 미치는 영향에 관한 수치적 연구)

  • Da-Hun Lee;Jae-Hyuk Lim;Eun-Ho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.50-60
    • /
    • 2023
  • Ball Grid Array (BGA) is a widely used package type due to its high pin density and good heat dissipation. In BGA, solder balls play an important role in electrically connecting the package to the PCB. Therefore, understanding the inelastic deformation of solder balls under various mechanical loads is essential for the robust design of semiconductor packages. In this study, the geometrical effect on the inelastic deformation and fracture of solder balls were analyzed by finite element analysis. The results showed that fracture occurred in both tilted and hourglass shapes under shear loading, and no fracture occurred in all cases under compressive loading. However, when bending was applied, only the tilted shape failed. When shear and bending loads were combined with compression, the stress triaxiality was maintained at a value less than zero and failure was suppressed. Furthermore, a comparison using the Lagrangian-Green strain tensor of the critical element showed that even under the same loading conditions, there was a significant difference in deformation depending on the shape of the solder ball.

The simulation of direct/indirect extrusion of AZ3l magnesium alloy by FEM (유한요소법을 이용한 AZ31 마그네슘합금의 직/간접 압출 전산모사)

  • Lee, H.W.;Yoon, D.J.;Park, S.S.;You, B.S.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.142-145
    • /
    • 2008
  • A finite element analysis has been conducted to simulate direct/indirect extrusion process for AZ31 Mg alloy at various ram and die speeds. Uniaxial compression test on AZ31 Mg alloy was carried out at various strain rates and temperatures and the result was used as input data fur finite element analysis. It was found that ram speed affects the distribution of dead zone area during direct extrusion. The inhomogeneous temperature and strain distributions through the thickness direction can be simulated under the various extrusion process conditions.

  • PDF

Solid Particle Behavior Analysis in Rheology Material by Fortran 90 (레오로지 소재의 고상입자 변형거동 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.234-237
    • /
    • 2008
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, Rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology Process to be Performed. General Plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape. In addition, the dynamics behavior compare with Okano equation to Power law model which is viscosity equation.

  • PDF

A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction (냉간 압축 하에서 금속 및 세라믹 분말에 대한 캡 모델의 연구)

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1376-1383
    • /
    • 2006
  • Densification behavior of various metal and ceramic powders was investigated under cold compaction. The Cap model was proposed by using the parameters involved in the yield function for sintered metal powder and volumetric strain evolution under cold isostatic pressing. The parameters for ceramic powder can also be obtained from experimental data under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powders under cold compaction. The agreement between finite element calculations from the Cap model and experimental data is very good for metal and ceramic powder under cold compaction.

A Study on Manufacture of Aluminum Automotive Piston by Thixoforging (반용융 단조 공정에 의한 자동차용 알루미늄 피스톤 제조에 관한 연구)

  • Choi, Jung-Il;Kim, Jae-Hun;Park, Joon-Hong;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.136-144
    • /
    • 2006
  • Aluminum engine piston is manufactured by thixoforging according to forming variables. It is very important to find effects of forming variables on final products in thixoferging. In order to find the effects, however, many researchers and industrial technicians have depended upon too many types of experiments. In this study, the process parameters which have influences on thixofurging process of aluminum automotive engine piston are found by a statistical method and the correlation equations between the process parameters and quality of product are approximated through the surface response analysis. Forming variables such as initial solid fraction, die temperature, and compression holding time are considered fur manufacturing aluminum engine piston by thixofurging. Hardness and microstructure are inspected so that optimal forming condition is found by the statistical approach.

Compaction Simulator Study on Pectin Introducing Dwell Time

  • Kim, Hyun-Jo;Venkatesh, Gopi
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Although many scientists have used pectin, its feasibility in terms of tablet manufacturability with a high speed machine has never been evaluated. Therefore, compactibility of different pectin types for large scale tableting operation has been evaluated. The compactibility behavior of powder pectins was studied by a compaction simulator. It was found that pectin on its own does not produce tablets of acceptable quality even at a punch velocity as low as 20 rpm (e.g. low tensile strengths, capping and lamination irrespective of applied compression force). Thus, dwell time was introduced and more hard compact was produced as relaxation time in die increases. It was concluded that frequent structural failure observed in both pectin types was due to lack of plastic deformation, poor compactibility and high elastic recovery.

Vertebral Metastasis from Hepatocellular Carcinoma of Unknown Origin

  • Kim, Young-Jin;Kim, Sung-Bum;Yi, Hyeong-Joong;Kim, Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.1
    • /
    • pp.47-50
    • /
    • 2006
  • This 51-year-old man suffered from paraparesis of 1-week history. On preoperative images, spinal cord compression by infiltrative vertebral mass was shown at T3 and T4 level. Several months earlier, he underwent surgical resection of left 2nd to 4th ribs, due to painful growing chest wall mass, which was proved to be hepatocellular carcinoma. All available diagnostic procedure failed to uncover origin of malignancy. Operation was followed by adjuvant irradiation and chemotherapy to the vertebral mass, however he only to die in 3 months after operation. This is an extremely rare case of ectopic hepatocellular carcinoma at thoracic vertebrae which showed very aggressive clinical course. Possible pathogenic process is presented and discussed.