• Title/Summary/Keyword: Compression capacity

Search Result 803, Processing Time 0.026 seconds

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.

Supporting ROI transmission of 3D Point Cloud Data based on 3D Manifesto (3차원 Manifesto 기반 3D Point Cloud Data의 ROI 전송 지원 방안)

  • Im, Jiehon;Kim, Junsik;Rhyu, Sungryeul;Kim, Hoejung;Kim, Sang IL;Kim, Kyuheon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.21-26
    • /
    • 2018
  • Recently, the emergence of 3D cameras, 3D scanners and various cameras including Lidar is expected to be applied to applications such as AR, VR, and autonomous mobile vehicles that deal with 3D data. In Particular, the 3D point cloud data consisting of tens to hundreds of thousands of 3D points is rapidly increased in capacity compared with 2D data, Efficient encoding / decoding technology for smooth service within a limited bandwidth, and efficient service provision technology for differentiating the area of interest and the surrounding area are needed. In this paper, we propose a new quality parameter considering characteristics of 3D point cloud instead of quality change based on assumed video codec in MPEG V-PCC used in 3D point cloud compression, 3D Grid division method and representation for selectively transmitting 3D point clouds according to user's area of interest, and propose a new 3D Manifesto. By using the proposed technique, it is possible to generate more bitrate images, and it is confirmed that the efficiency of network, decoder, and renderer can be increased while selectively transmitting as needed.

A Numerical Analysis on Performance of Parallel Type Ejector for High Altitude Simulation (고공 환경 모사를 위한 병렬형 이젝터 구성에 따른 특성 연구)

  • Shin, Donghae;Yu, Isang;Shin, Minku;Oh, Jeonghwa;Ko, Youngsung;Kim, Sunjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.52-60
    • /
    • 2019
  • In this study, the performance and structure of a parallel ejector comprised of multiple single ejectors were confirmed through numerical analysis. The same design variables (mass suction ratio, compression ratio, and expansion ratio) relevant to the performance of a single ejector were considered in the design of the parallel ejector. Analytical results showed that there was no significant difference in the performance of either system related to the operating mass suction ratio; however, the systemsize was significantly reduced. In addition, it was confirmed that when ejectors of the same performance capacity are arranged in parallel, the combined mass suction ratio is lower than that of the single ejector, allowing a lower pressure to be realized. The results of the analysis indicated that the parallel ejector's performance is not significantly different from that of any single ejector, but confirmed that the parallel ejector can offer a configurationdependent advantage in size and operation.

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach

  • Awoyera, Paul O.;Mansouri, Iman;Abraham, Ajith;Viloria, Amelec
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • Steel slag, an industrial reject from the steel rolling process, has been identified as one of the suitable, environmentally friendly materials for concrete production. Given that the coarse aggregate portion represents about 70% of concrete constituents, other economic approaches have been found in the use of alternative materials such as steel slag in concrete. Unfortunately, a standard framework for its application is still lacking. Therefore, this study proposed functional model equations for the determination of strength properties (compression and splitting tensile) of steel slag aggregate concrete (SSAC), using gene expression programming (GEP). The study, in the experimental phase, utilized steel slag as a partial replacement of crushed rock, in steps 20%, 40%, 60%, 80%, and 100%, respectively. The predictor variables included in the analysis were cement, sand, granite, steel slag, water/cement ratio, and curing regime (age). For the model development, 60-75% of the dataset was used as the training set, while the remaining data was used for testing the model. Empirical results illustrate that steel aggregate could be used up to 100% replacement of conventional aggregate, while also yielding comparable results as the latter. The GEP-based functional relations were tested statistically. The minimum absolute percentage error (MAPE), and root mean square error (RMSE) for compressive strength are 6.9 and 1.4, and 12.52 and 0.91 for the train and test datasets, respectively. With the consistency of both the training and testing datasets, the model has shown a strong capacity to predict the strength properties of SSAC. The results showed that the proposed model equations are reliably suitable for estimating SSAC strength properties. The GEP-based formula is relatively simple and useful for pre-design applications.

Development of Reinforcement Grout Materials Using Reinforcing Fiber and Blast Furnace Slag Powder (보강섬유와 고로슬래그 미분말 함유량에 따른 차수그라우트재 개발)

  • Seo, Hyeok;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.101-112
    • /
    • 2019
  • The grouting method is utilized to reinforce and waterproof poor grounds, enhance the bearing capacity of geo-structures damaged from differential settlement. The purpose of this research is to improve the compressive strength and degree of grout using reinforcing fibers and blast furnace slag powder. In this regard, this study has conducted uniaxial compression tests for the specimens with high ratios (higher than 50%) of blast furnace slag powder. The carbon fiber content was increased by 0, 0.5, and 1.0% to coMpare its compressive strength with that of aramid fiber. The uniaxial compressive strength increased with the increase of fiber content and the bridging activity by fiber in cement tended to increase uniaxial compressive strength. Based on the results, it was confirmed that the aramid fiber has a gel time of 14 seconds and the uniaxial compressive strength is more than 3 Mpa coMpared to carbon fiber.

Reactivity Improvement Characteristics of Weathered Feldspar through Activation Technique (활성기법을 통한 풍화된 장석의 반응성 개선 특성)

  • Cho, Jinwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.33-41
    • /
    • 2021
  • Feldspar, along with Quartz, are the most frequently produced minerals in Korea; however, the potential value is estimated to be significantly low because of the scarce research on the development and application of material properties, except for their limited use in manufacturing minerals, glass, and paints. In this study, we analyzed the eco-friendly material and reactivity improvement characteristics of weathered feldspar through activation technique. The joint structural features observed on the surface of the weathered feldspar show that the joint arrangements are irregularly distributed, and the cavities are interconnected. Due to the irregularly connected cavities on the surface of weathered feldspar, the reaction area of the weathered feldspar is increased; hence the weathered feldspar is considered as a highly reactive pozzolan material when combined with cement. As a result of applying the thermal, mechanical, and chemical activation techniques to improve the functionality of the weathered feldspar, the cation exchange capacity, density, and uniaxial compression strength characteristics were improved. It is considered that weathered feldspar by these porous characteristics can be used as an eco-friendly construction material with excellent physical and chemical properties.

Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents (압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가)

  • Pang, Seungki;Shin, Jinwon;Jeong, Hyunjin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips (철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가)

  • Jeong, Saebyeok;Jung, Donghyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.287-297
    • /
    • 2022
  • This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.

An Innovative shear link as damper: an experimental and numerical study

  • Ghamari, Ali;Kim, Young-Ju;Bae, Jaehoon
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.539-552
    • /
    • 2022
  • Concentrically braced frames (CBFs) possess high stiffness and strength against lateral loads; however, they suffer from low energy absorption capacity against seismic loads due to the susceptibility of CBF diagonal elements to bucking under compression loading. To address this problem, in this study, an innovative damper was proposed and investigated experimentally and numerically. The proposed damper comprises main plates and includes a flange plate angled at θ and a trapezius-shaped web plate surrounded by the plate at the top and bottom sections. To investigate the damper behaviour, dampers with θ = 0°, 30°, 45°, 60°, and 90° were evaluated with different flange plate thicknesses of 10, 15, 20, 25 and 30 mm. Dampers with θ = 0° and 90° create rectangular-shaped and I-shaped shear links, respectively. The results indicate that the damper with θ = 30° exhibits better performance in terms of ultimate strength, stiffness, overstrength, and distribution stress over the damper as compared to dampers with other angles. The hysteresis curves of the dampers confirm that the proposed damper acts as a ductile fuse. Furthermore, the web and flange plates contribute to the shear resistance, with the flange carrying approximately 80% and 10% of the shear force for dampers with θ = 30° and 90°, respectively. Moreover, dampers that have a larger flange-plate shear strength than the shear strength of the web exhibit behaviours in linear and nonlinear zones. In addition, the over-strength obtained for the damper was greater than 1.5 (proposed by AISC for shear links). Relevant relationships are determined to predict and design the damper and the elements outside it.