• Title/Summary/Keyword: Compression absorption

Search Result 205, Processing Time 0.021 seconds

Correlation Analysis between Injury Index of Multi-cell Headrest through k-means Clustering DB (k-means clustering DB를 통한 Multi-cell headrest의 상해지수 간 상관관계 분석)

  • Sungwook Cho;Seong S. Cheon
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The development of transportation methods has improved human transportation convenience and made it possible to expand the travel radius of people with disabilities who have difficulty moving. However, in the case of WAV (wheelchair Accessible Vehicle), the safety that may occur in a vehicle accident is still lower than that of regular passenger seats. In particular, in the case of a rear-end collision that may occur in a defenseless situation, it can cause fatal neck injuries to disabled passengers. Therefore, a more detailed design plan must be reflected in the headrest to be applied to WAV. In this study, a multi-cell headrest was proposed to implement local compression characteristic distribution of the headrest during rear-end collision of WAV. Afterwards, a correlation analysis was performed between the passenger's NIC (Neck Injury Criterion) and impact energy absorption using the data set construction through analysis and the clustering results using k-means clustering. As a result of clustering, it was confirmed that data clusters with similar characteristics were formed, and a correlation analysis between NIC and impact energy absorption through the characteristics of each cluster was performed. As a result of the analysis, it was confirmed that the softer the cell compression characteristics in Mid3 and Mid6, the more impact energy absorption increases, and the harder the cell compression characteristics in Front2, Mid3, and Mid6, the more effective it is in reducing NIC.

Development of Reinforced Wood Beams Using Polymer Mortar (폴리모 모르터를 이용한 강화목재보의 개발)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.79-86
    • /
    • 1990
  • Based on limited number of tests on reinforced wood beams using polymer mortar in this study, following conclusions were drawn ; 1.Reinforcing compression side of wood beam using polymer mortar was effective in reducing deflection. 2.By increasing thickness of polymer mortar, effective beam stiffness was improved, but energy absorption was reduced. 3.Polymer mortar reinforcement improved compressive strength and reduced strain in compression side of the beam. Therefore, it was possible to change the failure mode from by compression in control beam to by tension in composite beams. 4.The composite beams that have more than 2cm of polymer mortar layer did not perform well because a strain redistribution and separation of meterials at interface were induced in moment span. 5.To maximize the load carrying capacity of composite beam, it is necessary to make polymer mortar and wood behave together without failing at interface. To do this, it is needed to use a polymer mortar which has high strength with such elastic modulus that is closer to elastic modulus of wood. otherwise, it is recommended to use shear connectors at interface to prevent separation of materials under ultimate load.

  • PDF

A Study on the Photoisomerization of Fatty Acid and Polyamic Acid Mixture (지방산과 폴리아미드산 혼합물의 광이성질화 현상에 관한 연구)

  • 박근호;박태곤
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.695-701
    • /
    • 2002
  • Maxwell displacement current (MDC) measuring technique has been applied on the study of monolayers of fatty acid and polyamic acid mixture. The displacement current was generated from monolayers on the water surface by monolayer compression and expansion. Displacement current was generated when the area per molecule was about 132 $^2$and 115 $^2$just before the initial rise of the surface pressure during the 1st and 2nd mixed monolayer compressions cycle, respectively. Maxwell displacement currents were investigated in connection with mixed monolayer compression cycles. It was found that the maximum of MDC appeared at the molecular area just before the initial rise of surface pressure in compression cycles. Ultra thin film of fatty acid and polyamic acid mixture was prepared on the hydrophilic quartz plate by Langmuir-Blodgett (LB) method. The precursor LB film was heated in a vacuum dry oven at 12$0^{\circ}C$ in order to convert it into the LB film of polyimide. The absorption spectra of LB films were also induced photoisomerization by UV and visible light irradiation.

Chip on Glass Interconnection using Lateral Thermosonic Bonding Technology (횡방향 열초음파 본딩 기법을 이용한 COG 접합)

  • Ha, Chang-Wan;Yun, Won-Soo;Park, Keum-Saeng;Kim, Kyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.7-12
    • /
    • 2010
  • In this paper, chip-on-glass(COG) interconnection with anisotropic conductive film(ACF) using lateral thermosonic bonding technology is considered. In general, thermo-compression bonding which is used in practice for flip-chip bonding suffers from the low productivity due to the long bonding time. It will be shown that the bonding time can be improved by using lateral thermosonic bonding in which lateral ultrasonic vibration together with thermo-compression is utilized. By measuring the internal temperature of ACF, the fast curing of ACF thanks to lateral ultrasonic vibration will be verified. Moreover, to prove the reliability of the lateral thermosonic bonding, observation of pressured mark by conductive particles, shear test, and water absorption test will be conducted.

Analysis of hydroforming process for bumper stay (하이드로포밍 공정을 이용한 범퍼 스테이 개발)

  • 강부현;김봉준;류종수;손성만;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.233-236
    • /
    • 2003
  • A bumper comprises a bumper face, a bumper beam for distributing the load from the impacts applied to the bumper face and reinforcing the bumper, an absorber member interposed between the bumper face and the bumper beam, and a pair of bumper stays which secure the bumper beam to the vehicle body. A conventional bumper stay structure is assembled into several stamped parts, so several processes are needed and the structure is complicated. In this study the bumper stay is applied to the tubular hydroforming which is known to have several advantages such as the reduction of the number of the process and the part weight. The thickness distribution of the tube after hydroforming and the internal energy at the event of the a compression are mainly considered to evaluate the hydro-formability and energy absorption performance.

  • PDF

A Study on Energy Absorption Characteristics of Lightweight Structural Member according to Stacking Conditions (적층구성 변화에 따른 경량화 구조부재의 에너지 흡수 특성)

  • Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.241-245
    • /
    • 2012
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP (Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated.

A Study on the Collapse Characteristics of Hat-Shaped Members with Spot Welding under Axial Compression(I) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(I))

  • 차천석;김정호;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.192-199
    • /
    • 2000
  • The spot-welded automotive side member which has a hat-shaped section and a double hat shaped section has been tested on the axial static(10mm/min) and quasi-static(50mm/min) compressing load. The collapse characteristics of automotive sections have been reviews on shift on shape and in width of the spot-voiding on the flange. On the basis of the results of tests and reviews, the optimum energy absorption capacity of the structure has been studied.

  • PDF

Mechanical and Hygroscopic Behaviour of Teak Wood Sawdust Filled Recycled Polypropylene Composites

  • Yadav, Anil Kumar;Srivastava, Rajeev
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.202-208
    • /
    • 2018
  • In this paper, mechanical and hygroscopic properties of teak sawdust and recycled polypropylene (RPP) composites are evaluated and compared with virgin polypropylene (VPP) matrix based composites. Verities of composites are prepared by variation in the plastic types, wood plastic ratio and the addition of coupling agent in the formulations. Mixing of wood sawdust and polypropylene is done by a twin screw extruder, and then sheets of wood plastic composites (WPCs) are produced by using the compression molding method. The results show that recycled matrix composites exhibit better tensile, flexural strength with low impact strength than virgin matrix based composites. Recycled composites show low water absorption and thickness of swelling than virgin matrix based composites. The results confirm that wood content in the polymer matrix affects the performance of composites while presence maleated polypropylene (MAPP) improves the properties of the composites significantly. Developed RPP matrix composites are as useful as VPP matrix composites and have the potential to replace the wood and plastics products without any adverse effect of the plastics on the environment.

Tests of concrete-filled double skin CHS composite stub columns

  • Zhao, Xiao-Ling;Grzebieta, Raphael;Elchalakani, Mohamed
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.129-146
    • /
    • 2002
  • This paper describes a series of compression tests carried out on concrete filled double skin tubes (CFDST). Both outer and inner tubes are cold-formed circular hollow sections (CHS). Six section sizes were chosen for the outer tubes with diameter-to-thickness ratio ranging from 19 to 57. Two section sizes are chosen for the inner tubes with diameter-to-thickness ratio of 17 and 33. The failure modes, strength, ductility and energy absorption of CFDST are compared with those of empty single skin tubes. Increased ductility and energy absorption have been observed for CFDST especially for those having slender outer tubes with larger diameter-to-thickness ratio. Predictions from several theoretical models are compared with the ultimate strength of CFDST stub columns obtained in the tests. The proposed formula was found to be in good agreement with the experimental data.

Energy absorption investigation of square CFRP honeycomb reinforced by PMI foam fillers under quasi-static compressive load

  • Zhou, Hao;Guo, Rui;Bao, Kuo;Wei, Haiyang;Liu, Rongzhong
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.837-847
    • /
    • 2019
  • A type of hybrid core made up of thin-walled square carbon fiber reinforced polymer (CFRP) honeycomb and Polymethacrylimide (PMI) foam fillers was proposed and prepared. Numerical model of the core under quasi static compression was established and validated by corresponding experimental results. The compressive properties of the core with different configurations were analyzed through numerical simulations. The effect of the geometrical parameters and foam fillers on the compressive response and energy absorption of the core were analyzed. The results show that the PMI foam fillers can significantly improve the compressive strength and energy absorption capacity of the square CFRP honeycomb. The geometrical parameters have marked effects on the compressive properties of the core. The research can give a reference for the application of PMI foam materials in energy absorbing structures and guide the design and optimization of lightweight and energy efficient cores of sandwiches.