• 제목/요약/키워드: Compression Work

검색결과 547건 처리시간 0.019초

JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

  • Kahu, Samruddhi Y.;Bhurchandi, Kishor M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.5056-5078
    • /
    • 2018
  • In this work we propose a compression technique that makes use of linear and perceptually uniform CIE $La^*b^*$ color space in the JPEG image compression framework to improve its performance at lower bitrates. To generate quantization matrices suitable for the linear and perceptually uniform CIE $La^*b^*$ color space, a novel linear Contrast Sensitivity Function (CSF) is used. The compression performance in terms of Compression Ratio (CR) and Peak Signal to Noise Ratio (PSNR), is further improved by utilizing image dependent, variable and non-uniform image sub-blocks generated using a proposed histogram-based merging technique. Experimental results indicate that the proposed linear CSF based quantization technique yields, on an average, 8% increase in CR for the same reconstructed image quality in terms of PSNR as compared to the conventional YCbCr color space. The proposed scheme also outperforms JPEG in terms of CR by an average of 45.01% for the same reconstructed image quality.

앳킨슨사이클 실현을 위한 단기통 저속 디젤기관의 구성과 기초 실험 (A Composition and Basis Experiment of Single Cylinder Low Speed Diesel Engine for Atkinson Cycle Materialization)

  • 장태익
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.461-466
    • /
    • 2013
  • In this research, the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engine to the atkinson cycle, and general cycle features were analyzed after comparing these two cycles. That an experimental single cylinder and a long stroke diesel-atkinson engine, of which S/B ratio was more than 3, were manufactured. After evaluating the engine through basic experiments, a diesel engine was converted into the atkinson cycle by constituent VCR (variable compression ratio) device and VVT (variable valve timing) system. The experimental method was to observe compression work reduction effects due to low compression effects from delayed intake valve closing of the early stage atkinson engine. The result, the possibility of increasing compression ratio about each engine load was confirmation by constructing compensate expansion-compression ratio in accordance with the delayed intake valve close.

Propagation Characteristics of Compression Waves Reflected from the Open End of a Duct

  • Kim, Heuy-Dong;Lee, Dong-Hoon;H. Kashimura;T. Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.718-725
    • /
    • 2003
  • The present study addresses the distortion of the compression wave reflected from an open end of a shock tube. An experiment is carried out using the simple shock tube with an open end Computational work is also performed to represent the experimented flows. The second-order Total Variation Diminishing scheme is employed to numerically solve the unsteady, axisy-mmetric, inviscid, compressible governing equations. Both the experimented and predicted results are in good agreement. The generation and development mechanisms of the compression wave, which Is reflected from the open end of the shock tube, are obtained in detail from the present computations. The effect of size of the baffle plate at the open-end that causes the reflection of the incident expansion wave is found negligible. A good correlation is obtained for transition of the reflected compression wave to a shock wave inside the tube. The present data show that for a given wave length of the incident expansion wave the transition of the reflected compression wave to a shock wave can be predicted with good accuracy.

Effect of Drag Stages Surface Roughness on the Compression Ratio of a TMDP

  • Bianco, Alessandra Dal;Bonmassar, Luca
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.120-123
    • /
    • 2016
  • The rotor of a turbomolecular drag pump is generally made of an aluminum alloy. Its surface finish is affected by various processes that the rotor itself undergoes during the manufacturing phase. The impact of different surface finishes on the pumping performances of a turbomolecular pump has been mainly investigated by Sawada et al [1]. The present work aims to broaden the previous bibliographic study to the drag stages of a turbomolecular pump by testing the impact of different surface finishes on the compression ratio of the pump. Experimental tests have been made focusing on two processes: the corundum sandblasting and the glass microspheres shot-peening. Both the processes flatten and/or physically remove EDM melted spheres; in particular, blasted surfaces obtained by glass shot-peening are generally smoother than surfaces obtained by corundum sandblasting. In order to characterize the surface texture left by such processes, preliminary surface roughness measurements have been made on the drag rotor disks of several pumps. The experimental tests conducted on both sandblasted and shot-peened rotors confirms previous results obtained on the turbo stages by Sawada et al. [1], showing that the average roughness of the surface has an impact on the compression ratio of the pump; in particular, an increment in the surface roughness causes a corresponding increment in the compression ratio of the pump and vice versa. For the tested pumps, the higher surface roughness gives a factor of increment of about 2 on the measured hydrogen maximum compression ratio of the pump.

Axial strength of FRP-reinforced geopolymeric concrete members: A step towards sustainable construction

  • Mohamed Hechmi El Ouni;Ali Raza;Bisma Khalid;Afzal Ahmed;Muhammad Sohail Jameel;Yasser Alashker
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.687-704
    • /
    • 2023
  • This study aims to examine the structural response of glass fibre-reinforced polymer (Glass-FRP) reinforced geopolymer electronic waste aggregate concrete (GEWC) compression elements under axial compression for sustainable development. The research includes the fabrication of nine GEWC circular compression elements with different reinforcement ratios and a 3-D nonlinear finite element model using ABAQUS. The study involves a detailed parametric analysis to examine the impact of various parameters on the behavior of GEWC compression elements. The results indicate that reducing the vertical distance of glass-FRP ties improves the ductility of GEWC compression elements, and those with eight longitudinal rebars have higher axial load-carrying capacities. The finite element predictions were in good agreement with the testing results, and the put forwarded empirical model shows higher accuracy than previous models by involving the confinement effect of lateral glass-FRP ties on the axial strength of GEWC compression elements. This research work contributes to minimizing the carbon footprint of cement manufacturing and electronic waste materials for sustainable development.

가슴압박시 구급대원의 체간 각도와 근활성도 분석 (Analysis of trunk angle and muscle activation during chest compression in 119 EMTs)

  • 신동민;이창섭;김승용;김창국;홍은정;이영철;최가람;김경용;장문순;김정희;한붕기;이종근;탁양주
    • 한국응급구조학회지
    • /
    • 제18권3호
    • /
    • pp.7-18
    • /
    • 2014
  • Purpose: We aimed to investigate trunk angle and muscle activation of the extremity and back to evaluate the effect of chest compression on work-related musculoskeletal disorders in 119 emergency medical technicians (EMTs). Methods: Eighteen 119 EMTs performed 2-minute chest compression without interruption on a cardiopulmonary resuscitation manikin, during which we measured changes in the trunk and shoulder joint angles, muscle activation (triceps brachii, biceps brachii, erector spinae, gluteus maximus, pectoralis major, rectus abdominis, and rectus femoris) and chest compression accuracy. Results: The decrease in trunk angle by trunk muscle activation was the highest in event 2, the major direction of chest compression. Both shoulder joint angles had no significant difference. Muscle activation of the triceps brachii (p < .01), biceps brachii (p < .05), rectus abdominis (p < .05) and rectus femoris (p < .01) significantly increased during the compression phase compared with the decompression phase, with the rectus femoris showing an increase of 19%. Muscle activation of the erector spinae significantly increased in the decompression phase compared with the compression phase (p < .01). Conclusion: 119 EMTs mainly use the triceps brachii, biceps brachii and pectoralis major muscles during chest compression.

Study on the effect of ties in the intermediate length Cold Formed Steel (CFS) columns

  • Anbarasu, M.;Kumar, S. Bharath;Sukumar, S.
    • Structural Engineering and Mechanics
    • /
    • 제46권3호
    • /
    • pp.323-335
    • /
    • 2013
  • This work aims to study the effect of stiffener ties in the behavior of intermediate length open section Cold-Formed Steel (CFS) Columns under axial compression. A comparative study on the behaviour and strength of Cold Formed Steel Columns by changing the direction of projection of lips (i.e., inwards or outwards) are also done. In this work two types of sections were considered Type-I section with lip projecting outwards (hat) and Type-II section with lip projecting inwards (channel). The length of the columns is predicted by performing elastic buckling analysis using CUFSM software. The theoretical analysis is performed using DSM - S100;2007, AS/NZ: 4600-2005 and IS: 801-1975. The compression tests are carried out in a 400 kN loading frame with hinged-hinged end condition. The non-linear numerical analysis is performed using Finite Element software ANSYS 12.0 to simulate the experimental results. Extensive parametric study is carried out by varying the width and spacing of the stiffener ties. The results are compared; the effects of stiffener ties on behaviour and load carrying capacity on both types of columns are discussed.

DME 체적탄성계수의 측정 및 계산 (Measurement and Calculation of Bulk Modulus for DME)

  • 조승환;이범호;이대엽
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.841-848
    • /
    • 2008
  • DME(Di-methyl Ether) has been expected to be one of the promising alternative fuels for compression ignition engines due to its low emission characteristics for particulate matter. However, its physical properties such as density, bulk modulus and viscosity are not comparable to those of conventional diesel fuel. Especially, problems caused by low lubricity and high compressibility need to be understood more thoroughly, when a DME fuel is used for compression ignition engine, especially with mechanical fuel supply system. In this study, measurement and calculation of DME's bulk modulus were carried out over the range of temperatures from $-3^{\circ}C$ to $53^{\circ}C$, and pressures from 50 bar to 250 bar using an experimental apparatus built in this work. The results show that DME is prone to be compressed more easily compared to diesel fuel. A comparison of bulk modulus with butane and propane were also made in this work.

Acrylic Carpet의 압축특성에 관한 연구 (A Study on the Compressional Properties of Acrylic Carpet)

  • 성수광;구경옥
    • 한국의류학회지
    • /
    • 제11권2호
    • /
    • pp.13-21
    • /
    • 1987
  • Nowadays, the amount used carpets are on the increase, according to the improvement of life-style. The pleasantness of carpet is caused by the properties of pile, because the most carpets are made pile fabric. For that reason, a study on the compressional properties of carpet is very important issue. This study has been carried out to investigate the differences of compressional properties in various acrylic carpets which were Cut, Tufted, Jacquard and Shag. Each acrylic carpets was transformed to 4, 6, 8 mm of pile height, as results of transformation, we could get the pressure-thickness curve and pressure-deformation curve. The results are summarized as follows. 1. Rate of compression increases, compressive resistance and compressive elasticity decr-eases, as pile height increases. 2. Regardless of pile height, compressive elasticity reached the limit in recovery period at about 10 minutes. 3. Work of compression increases, as pile height increases. 4. Work of compression decreases, as apparent density increases. 5, Cut-type carpet has the best cushion.

  • PDF

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).