
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, Oct. 2018 5056
Copyright ⓒ 2018 KSII

JPEG-based Variable Block-Size Image
Compression using CIE La*b* Color Space

Samruddhi Y. Kahu1 and Kishor M. Bhurchandi1

1 Department of Electronics and Communication Engg., Visvesvaraya National Institute of Technology
Nagpur, Maharashtra 440010 - India
[e-mail: samruddhikahu@gmail.com]

*Corresponding author: Samruddhi Y. Kahu

Received January 12, 2018; revised March 26, 2018; accepted April 16, 2018;
published October 31, 2018

Abstract

In this work we propose a compression technique that makes use of linear and perceptually
uniform CIE La*b* color space in the JPEG image compression framework to improve its
performance at lower bitrates. To generate quantization matrices suitable for the linear and
perceptually uniform CIE La*b* color space, a novel linear Contrast Sensitivity Function
(CSF) is used. The compression performance in terms of Compression Ratio (CR) and Peak
Signal to Noise Ratio (PSNR), is further improved by utilizing image dependent, variable and
non-uniform image sub-blocks generated using a proposed histogram-based merging
technique. Experimental results indicate that the proposed linear CSF based quantization
technique yields, on an average, 8% increase in CR for the same reconstructed image quality
in terms of PSNR as compared to the conventional YCbCr color space. The proposed scheme
also outperforms JPEG in terms of CR by an average of 45.01% for the same reconstructed
image quality.

Keywords: JPEG, Image Compression, CIE La*b* Color Space, Contrast sensitivity
function, Quantization.

http://doi.org/10.3837/tiis.2018.10.023 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5057

1. Introduction

Since its inception in 1993, JPEG has become a widely used image compression format in
internet and multimedia applications [1-3]. As a lot of applications and work-flows have
already been developed around it, its widespread usage remains unabated [4] despite the
emergence of image compression standards such as JPEG 2000, and HEIC (HEVC still image
compression standard). The basic block diagram of JPEG is shown in Fig. 1. As noted in Fig.
1, plenty of research effort has been made on improving the performance of almost all the
major blocks of JPEG. In [5], trapezoid and triangular blocks are used instead of the regular
8×8 blocks in JPEG. Shape Adaptive DCT (SA-DCT) has also been used in conventional
image/video coding algorithms since the 1990s. In [6], image is segmented using splitting and
merging technique and SA-DCT is used to transform the segmented arbitrary shaped image
regions. SA-DCT along with overlapped transform is also used in [7] where smooth regions of
the image are downsampled and then transformed. Superpixel Driven Graph Transform
(SDGT) is used in [8] instead of SA-DCT. In [8], image is segmented using the graph
technique and each segment is transformed using SDGT. Authors in [9] have proposed the use
of fuzzy logic for approximating the 2D-DCT used for transforming image sub-blocks in
JPEG. Discrete Hartley Transform (DHT) is proposed in [10] as an alternative to DCT for
image sub-block transformation. As DHT is used, another efficient quantization approach and
scanning order (in lieu of zigzag scanning order used in JPEG) is proposed in [10]. To enhance
the quantization performance, Just Noticeable Difference (JND) based quantization
techniques for JPEG have been proposed in [11-13]. A lot of research has been invested to find
efficient JND profiles as Human Visual System (HVS) characteristics can be accurately and
efficiently modeled using JND. As a result, many DCT based JND models have been proposed
in the past [14 – 21]. A new quantization table is generated for JPEG based on a generic
psychovisual error threshold in [22]. In [23], the existing transform and quantization
operations of JPEG are modified so that only bit-shifts are required for quantization operation.
This leads to lower power consumption while encoding/decoding images. In [24], local
prediction based adaptive scanning is used instead of conventional zigzag scanning in DCT
based compression techniques such as JPEG and H.264/AVC-intra. The Run Length Coding
(RLC) technique of JPEG is further optimized in [25] so that the redundancies in the JPEG’s
RLC technique are further reduced. In [26], four modifications are proposed to improve the
efficiency of JPEG’s binary arithmetic QM coding. Adaptive Golomb Coding is used as
entropy coding in [27] to improve the compression efficiency of JPEG. A saliency based
approach to improve the performance of JPEG is proposed in [28] and a block-based image
quality metric is used to improve the rate-quality performance of JPEG in [29]. Apart from
these techniques, many other optimization techniques have been proposed for the performance
improvement of JPEG. Interested reader is referred to [4] for more details.

On the other hand, to the best of the authors’ knowledge, not a lot of research is focused on
the color space conversion technique used in JPEG. Color space conversion plays an important
role in any compression scheme as it represents the color image in a color space to minimize
the psycho-visual redundancies. YCbCr has been conventionally used for coding of images
and videos as it is a luminance-chrominance color space.

5058 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

Fig. 1. Basic JPEG block diagram with relevant publications in the corresponding area of research

In this paper, we use a perceptually uniform and linear CIE La*b* color space for

compression of images. Though CIE La*b* color space has been used in past for compression
of images/videos, it has been majorly used for pre-processing while the actual
encoding/decoding is done in YCbCr color space [34, 35]. As linear and perceptually uniform
CIE La*b* color space is used, we use a linear CSF for generation of the quantization matrices.
Linear CSF used in this work is derived from the CSF proposed by Klein et al. [36]. Besides, a
novel histogram based approach of dividing the image into variable block sizes is also
proposed. Variable block size algorithms have come up in the past years and have been
incorporated in [30 – 33]. They are mostly top-down quad-tree decomposition based
approaches. These algorithms start from a large, uniform and fixed block called Macro Block
(MB) typically of size 16×16 or 32×32. Each MB is then divided into smaller non-uniform
blocks according to the image structure. In this process, though the size of image sub-blocks is
variable, their positions are fixed. Our algorithm is more compatible to the image structure as
both size and position of the image blocks are variable.

To describe the proposed techniques in detail, rest of the paper is organized as follows. In
Section 2, we discuss the important techniques and concepts leading to the proposed
techniques. Section 3 presents the proposed techniques while experimental results are
presented and discussed in Section 4. We conclude this paper in Section 5.

2. Fundamental Methods and Materials
In this section, we review some of the fundamental techniques that are utilized in the proposed
work.

2.1 CIE La*b* Color Space
Images are captured and/or displayed by most of the digital devices in RGB color space since
it is an orthogonal color space and hence is hardware friendly. RGB color space being highly
correlated is not suitable for compression. Generally, YCbCr color space is used by most of the
standard image and video compression systems as it is a highly decorrelated
luminance-chrominance color space. However, in this paper, we have used CIE La*b* color
space instead of YCbCr due to its inherent advantages which are discussed as follows:
1) Like YCbCr, La*b* is also a luminance-chrominance color space. Therefore, it gives high

decorrelation and hence chrominance subsampling [37] can be effectively implemented.
2) La*b* color space is a color-opponent color space with dimensions L for lightness and a*

and b* for the color-opponent dimensions, based on nonlinearly-compressed CIE XYZ
color space coordinates. The three planes L, a* and b* have pixel intensity ranges; L [0,
100], a* [-100, 100] and b* [-100, 100]. Hence, L plane can be represented using 7
bits/pixel as against the 8 bits/pixel required by Y plane of YCbCr. This itself contributes to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5059

a saving of 1 bit/pixel. The values that a pixel can take in a* and b* plane are centered on 0.
Hence, there is no need of level shifting for a* and b* planes unlike YCbCr where level
shifting is required for all the three planes.

3) CIE La*b* is a linear and perceptually uniform color space [35]. Hence quantization can be
implemented effectively without perceptual loss of visual quality.

4) Another advantage of CIE La*b* is that it is a device independent color space [38].
Since authentic direct color conversion formulae for converting from RGB to CIE La*b*

color space are not available, we first convert to CIE XYZ and then to La*b*. For conversion to
CIE XYZ color space, gamma-corrected RGB values are converted to linear RGB values
before applying the following conversion formula [39];
































=

















B
G
R

Z
Y
X

9505.01192.00193.0
0722.07152.02126.0
1805.03576.04124.0

 (1)

where R, G, B are the linear RGB values.
Conversion from CIE XYZ to CIE La*b* [34, 40, 41] is accomplished using (2), (3) and (4)

as discussed below:

16116 −







×=

nY
YfL (2)

















−








×=

nn Y
Yf

X
Xfa 500* (3)

















−








×=

nn Z
Zf

Y
Yfb 200* (4)

where X, Y, Z are calculated using (1) above and Xn, Yn, Zn are the tri-stimulus values of the
adapting white [34, 40, 41]. The function f used in (2), (3) and (4) is given as;

()






≤+

>
= 008856.0

116
16787.7

008856.03/1

xx
xx

xf (5)

2.2 Exponential Golomb Coding

Exponential Golomb codes were first proposed for the representation of non-negative integers
with exponentially decaying probability distribution [42]. Exponential Golomb codes offer a
host of advantages over other DCT based entropy coding techniques. Firstly, they don’t
require look-up tables to provide supplemental information to the encoder. And secondly,
theoretically they can be used to encode a data source with an infinite number of possible
symbols unlike Huffman coding [27]. Given a non-negative integer n, the zeroth order
exponential Golomb code of n is represented as 0 ()exp nG and can be computed using following
steps:
Step 1: Calculate prefix m from the symbol to be coded n using,

() 1log2 += nm (6)
and form the unary code of m (unary code of a number x is the number of x zeros followed by
1).
Step 2: Determine the binary representation of

5060 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

(1) 2mn + − (7)
truncated to m least significant bits.
Step 3: Concatenated binary representation of results of steps 1 and 2 is the exponential
Golomb code of n.

2.3 Binary Arithmetic (QM) Coding

Binary arithmetic coding is used as an entropy coding technique in many image/video
compression algorithms. QM-coder is a version of binary arithmetic coding used with some
implementations of the JPEG standard [3, 43]. The process of binary arithmetic QM coding is
presented here in brief.

In binary arithmetic QM coding, instead of coding symbols 0 and 1 directly, they are
mapped to most probable symbol (MPS) or least probable symbol (LPS). The basic idea
behind this mapping is that when a completely black image (black denoted by 0) has a small
white patch (white denoted by 1) in it, 0 is mapped to MPS while 1 is mapped to LPS.
Whenever a symbol is input, QM coder first decides whether it is MPS or LPS based on the
symbols input in the past with the help of probability estimation tables and then encodes it.

Suppose we have an interval A and the LPS probability estimate is Qe, MPS probability
estimate will obviously be 1 – Qe since there are only two possible input symbols. The interval
A is then divided into two parts by the QM coder such that LPS sub-interval is A×Qe and the
MPS sub-interval is A×(1 – Qe). The positioning and sizes of the sub-intervals according to
convention is depicted in Fig. 2. The input symbol sequence of MPS and LPS is encoded into
a code stream (pointer) C by QM coder. Ideally, C can point anywhere in the current interval
(either MPS or LPS) but for ease of operation, QM coder points C at the bottom of the current
interval.

Fig. 2. Interval Subdivision in QM Coder

3. Proposed Work
Flowchart of the proposed JPEG-based image compression scheme is shown in Fig. 3. The
blocks that are modified as compared to the basic JPEG block diagram in Fig. 1 are
highlighted. The structure of Fig. 3 is deliberately kept similar to that in Fig. 1 in order to
highlight the modifications and bring out the differences.

In this scheme, classification and subsequent grouping of adjacent 8×8 blocks based on
their similarity in terms of mean and variance is incorporated in CIE La*b* color space. This
results in the formation of blocks of 10 different sizes. Most of the HVS based quantization
techniques for DCT are proposed for perceptually non-uniform and non-linear YCbCr color
space and fixed block sizes. We propose modifications to make them suitable for the
perceptually linear and uniform CIE La*b* color space and for the image-dependent
non-uniform image sub-blocks, as it is more pragmatic. Important and highlighted (modified)
blocks/steps of the algorithm presented in Fig. 3 are explained below in detail.

A 0A(1 – Qe)

LPS Sub-interval
= A × Qe

MPS Sub-interval
= A(1 – Qe)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5061

Input
Image

RGB to
CIE La*b*

Chrominance
Subsampling

(4:2:0)

Level Shifting
of L plane

Division into variable
non-uniform blocks

2D-DCTCSF based
Quantization

Zigzag
Ordering

Run-Length
Coding

QM Coding for
image sub-blocks

Output
Bitstream

Exp. Golomb Coding
for Block Size Indices

Block Size Index Array BIdx

Entropy Coding
Fig. 3. Flowchart of the encoder of the proposed scheme

3.1 Conversion to CIE La*b* Color Space

Input RGB image is first converted to CIE La*b* using (1) to (5) given in section 2.1.
Since human eye is less sensitive to chrominance information than luminance,

chrominance subsampling is applied on a* and b* planes. Subsampling ratio of 4:2:0 is used
[37]. In other words, a* and b* planes are subsampled by a factor of 2 both horizontally and
vertically.

As mentioned in section 2.1, since the intensity values of a* and b* color planes are already
centered on zero, there is no need of level shifting for a* and b* planes. However, a value of 50
is subtracted from each pixel intensity value of the L plane in order to center the mean of L
plane on zero, in the proposed algorithm. Rest of the steps of the proposed algorithm are same
for level shifted L plane and subsampled chrominance planes a* and b*.

3.2 Division into variable non-uniform blocks

The proposed algorithm uses blocks of different rectangular shapes and sizes as against the
uniform 8×8 sized blocks used by most of the image compression algorithms. Sixteen different
block sizes are used in the proposed work, smallest being 8×8 and the largest, 32×32. The
process of division into these non-uniform blocks is described below with the help of Fig. 4.

(a) Division into 8×8 blocks (b) Mean plane (normalized) (b) Variance plane

(normalized)
(d) Division into
non-uniform blocks

Fig. 4. Process of histogram based merging on Lena

3.2.1 8×8 blocks

Initially, the input image is divided into the smallest size 8×8 non-overlapping uniform blocks
just like in JPEG and as shown in Fig. 4 (a).

5062 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

3.2.2 Indexed histogram based merging

Mean and variance of each 8×8 block is calculated. Only first two statistical moments i.e.
mean and variance are used to describe the characteristics of the 8×8 blocks. Thus, for each
sub-plane (L, a* or b*) of an input image I of size P×Q, we have two planes each of size
P/8×Q/8; namely mean plane containing all mean values of 8×8 blocks of the image shown in
Fig. 4 (b) and variance plane having all variances of 8×8 blocks of the image shown in Fig. 4
(c). Mean and variance values of 8×8 image sub-blocks are displayed in Fig. 4 (b) and Fig. 4
(c). These values are normalized to the range 0 to 255 only for display purpose so that the
information contained in them is clearly visible. However, for the indexed histogram
formation and subsequent grouping, original mean and variance values are used. This data is
stored in a 3 dimensional matrix (A) with two P/8×Q/8 planes. Thus, A(1:P/8,1:Q/8,1) denotes
the mean plane and A(1:P/8,1:Q/8,2) denotes the variance plane.

A histogram table is formed using these values and statistical bin size thresholds are chosen
as discussed further. A sample indexed histogram table structure is shown in Fig. 5.

The histogram formation process is described as below;

1) Initialize an indexed histogram table structure H with k = 1 row and four columns, namely
index, mean, variance and population. The number of rows k goes on increasing if the next
block [mean, variance] is different than the earlier registered one [mean, variance] using
thresholds Thmn and Thvar.

2) Initialize the first entry in the table by the mean and variance of the first 8×8 image block
that is the top left corner block in the image and population and index to 1.
H(1,2:3) = A(1,1,1:2), H(1,4) = 1 and H(1,1) = 1.

3) Scan the matrix A along the rows and read the next mean and variance values stored in A.
Compare every new pair of mean and variance stored in matrix A with all the earlier
recorded mean and variance pairs in H and increment the population of that row of H which
satisfies the condition given in (8), else record mean and variance values at that location of
A in the next new row of H and initialize its population to 1.

 () ()var)3,()2,,()2,()1,,(ThkHnmAANDThkHnmA mn <−<− (8)

The thresholds Thmn and Thvar are obtained by calculating standard deviation of the mean
and variance values in the mean plane and variance plane, respectively.

Note that, here, Thmn is used to threshold the difference between mean values and similarly,
Thvar is used to threshold the difference between variance values. Hence, standard deviation of
the respective values is used as the threshold. In addition to the formation of the histogram
table H, a new index matrix Idx of size P/8×Q/8 is formed simultaneously. Idx contains the
indices of all the block locations in matrix A, as indicated by histogram table H. These indices

Index No. Mean Variance Population
1 15.64 0.79 50
2 13.72 0.35 217
3 19.42 1.31 41
.
.
.

.

.

.

.

.

.

.

.

.

Fig. 5. Indexed Histogram Table H with arbitrary data.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5063

in Idx are further used for grouping of the adjacent blocks. If indices of the immediate
neighbouring blocks (N4) are same, then blocks are merged to form bigger blocks.

3.2.3 Merging of adjacent blocks

Adjacent blocks are grouped based on the index matrix Idx to form blocks of sizes 32×32,
32×24, 24×32, 24×24, 32×16, 16×32, and so on, till 8×8. These block sizes are allotted indices
from 15 to 0, respectively. Note that all possible combinations of block sizes starting from
32×32 till 8×8 in steps of 8 are used.

The highest block size chosen is 32×32. This is because sharpness of human vision is
highest in the fovea region covering approximately 2° of visual angle. This corresponds to a
radius of approximately 40 pixels for Λ = 1.5 min/pixel for normal viewing distance. Thus a
32×32 image sub-block is faithfully covered by the visual angle [21]. Smallest block size
considered is 8×8 in accordance with the JPEG standard. In the above procedure, vertical
block sizes such as blocks 32×24, 24×16, 32×16, etc. are considered before horizontal blocks
24×32 or 16×32 as natural images contain more vertical structures than horizontal ones [44].
Experimental analysis shows that natural images contain very less number of block sizes
greater than 32×32. Thus, considering block sizes greater than 32×32 will further increase the
blocking overhead and the compression performance may deteriorate.

Further, a block size index array, BIdx, is constructed using Idx and the block indices 0 to
15. BIdx indicates the spatial position and its block index in the image and is used, further, for
forming the compressed bitstream. The same BIdx will be used at the decoder to decode the
image. Section of a sample index matrix Idx is shown in Fig. 6 (a). Adjacent blocks having
same indices are merged to form bigger non-uniform blocks which are shown using different
colors. Fig. 6 (b) shows a sample block size index array BIdx formed using the sample index
matrix of Fig. 6 (a). The algorithm used for merging is diagrammatically explained using Fig.
7 and summarized in the form of a pseudo code in Algorithm 1.

It is clearly evident from Algorithm 1 that priority is given for the formation of bigger
block sizes such as 32×32, 32×24, 24×24 etc. Thus, the order in which blocks are checked for
merging based on Idx is: 32×32, 32×24, 24×24, 32×16, 16×32, 24×16, 16×24, 16×16, 32×8,
8×32, 24×8, 8×24, 16×8, 8×16 and 8×8. In this way, the complete image is encoded and a
block index array named BIdx is formed. This block index array is compressed using
exponential Golomb coding and sent to the decoder as overhead information along with the
compressed image blocks.

32 32 32 32 40 40 39 39 39 36 36 5
32 32 32 32 40 40 19 43 43 36 36 5
32 32 32 32 40 39 24 15 43 43 17 5
32 32 32 32 40 39 40 38 15 13 14 5
18 18 18 32 32 32 33 33 36 38 39 5
18 18 18 32 32 32 33 33 12 17 10 10
18 18 18 18 17 16 33 33 37 37 37 37

16 8 3 4 … … 6

(a) Section of a sample index matrix Idx (b) Corresponding block size index
array BIdx

Fig. 6. Sample Idx and BIdx matrices

Algorithm 1: Grouping of adjacent 8×8 image sub-blocks

5064 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

Input: Index matrix Idx, Input image plane (L, a* or b*) of size P×Q
Output: Block size index array BIdx, compressed codestream
begin

1. Initially set index variables to zero, i = 0, j = 0 and p = 1.
Following steps are executed until all the 8×8 blocks of the image are encoded:
2. If all values of matrix Idx(i:i+3,j:j+3) are same

Code 32×32 block of the image plane;
BIdx(p) = 16;
j = j + 3;

3. Else check all values of matrix Idx(i:i+3,j:j+2), if same
Code 32×24 block of the image plane;
BIdx(p) = 15;
j = j + 2;

4. Else check values of matrix Idx(i:i+2,j:j+3), if same
Code 24×32 block of the image plane;
BIdx(p) = 14;
j = j + 3;

5. Else check values of matrix Idx(i:i+2,j:j+2), if same
Code 24×24 block of the image plane;
BIdx(p) = 13;
j = j + 2;

6. …
7. …

…
 10. Code 8×8 block of the image plane;
 BIdx(p) = 0;
 j = j + 1;
 11. p = p + 1; Increment i appropriately;
end

Indices different?

4 × 4 4 × 4 4 × 3 4 × 4 3 × 4 4 × 4

3 × 33 × 44 × 34 × 4

Index matrix Idx

Q/8

P/
8 Indices sam

e?

Indices different?

Indices sam
e?

Indices different?

Indices sam
e?

Fig. 7. Example Grouping of adjacent 8×8 image sub-blocks using index matrix Idx

Thus, after similarity based merging of adjacent 8×8 blocks, the input image gets divided
into non-uniform blocks as seen in Fig. 4 (d). The above splitting and merging algorithm is
implemented on the level shifted L plane and subsampled a* and b* planes separately as all the
three planes are compressed separately. Fig. 4 (d) shows the results of division of L plane only.
Colored image is shown instead of the gray scale luminance image for better understanding.
From Fig. 4 (d), it can be clearly seen that smooth regions have larger blocks whereas edges

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5065

and textured regions get divided into smaller blocks, more specifically, 8×8 blocks. Horizontal
and vertical edges get divided into preferably 8×32, 8×24, 8×16 and 32×8, 24×8, 16×8 sized
blocks, respectively.

However, division into non-uniform blocks may not be properly justified from Fig. 4 (d) as
regions appearing uniform are shown to be divided into smaller blocks. Hence, a simple color
image shown in Fig. 8 (a) is used to illustrate the result of division into non-uniform blocks.
Fig. 8 (b) shows the results of splitting and merging algorithm implemented on level shifted L
plane of Fig. 8 (a) justifying the division into non-uniform blocks. However, there are still
some discrepancies as red and pink colored stripes are getting merged with gray colored
boundary region in single 32×32 blocks. Similarly, yellow, green and aqua colors are also
getting merged. This happens as luminance values of red, pink and gray colors and that of
yellow, green and aqua colors are similar as seen from Fig. 8 (c). This is taken care of by
implementation of this algorithm on subsampled chrominance planes. Result of division of
chrominance b* plane into non-uniform blocks is shown in Fig. 8 (d). In Fig. 8 (d), all the
color components are getting divided faithfully. This also justifies the need of implementation
of the splitting and merging algorithm on the three image planes separately. As compared to
the hierarchical variable block size algorithm of H.264 or HEVC, our algorithm is more
compatible to the image structure as both size and position of the image blocks are variable.

(a) Original Image (b) Division of L plane into non-uniform blocks

(color image shown for illustrative purpose only)

(c) Grey scale image of L plane divided into

non-uniform blocks
(d) Chrominance b* plane divided into

non-uniform blocks
Fig. 8. Process of histogram based merging on color bars image

The M×N image sub-blocks thus formed, are transformed into M×N spectral domain

coefficients using two-dimensional Discrete Cosine Transform (2D-DCT).

3.4 CSF based Quantization

Since non-uniform block sizes are used, we need quantization matrices of sizes suitable for the
16 different block sizes. CSF based quantization method proposed in [36] is modified and used
for the generation of quantization matrices. Though [36] describes quantization matrix

5066 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

generation for 8×8 block size only, this method is heuristically extended for the generation of
quantization matrices for all other non-uniform block sizes. As CIE La*b* space is used in the
proposed scheme, a linear CSF is used for the generation of quantization matrices. As the
range of intensity values is different for L plane and a* and b* planes, different set of
quantization matrices are generated for L plane and a* and b* planes. CSF for quantization
matrix generation as given in [36] is

() 100 exp(0.13)CSF f f f= − (8)
where f is spatial frequency in cycles/degrees, given by

Λ×
+

=
8

30),(
22 vuvuf (9)

where u,v are co-ordinates of the DCT block. Pixel size Λ is assumed to be 1.5 min/pixel [36].
Above equation gives frequency matrix for 8×8 block size only. Hence, the factor of 8 in the
denominator of this equation. This equation can be extended to find frequency for any M×N
size block using (10);

Λ×
+

=
Nn

vuvuf
22

30),((10)

where Nn is given by (11) as follows
Nn M N= × (11)

Since we are using CIE La*b* color space for compression, a linear CSF given by (12)
below is used in this paper for quantization matrix generation.

)()(maxffcfCSF −= (12)

where f is given by (10) and fmax is the maximum frequency in an M×N image sub-block and is
calculated using the formula shown below

Λ×
+

=
Nn

NMf
22

max 30 (13)

In (12), c is a constant which governs the performance and quality of reconstructed image
in terms of CR and PSNR as shown in Fig. 9.

-2 -1.5 -1 -0.5 0 0.5 1

CSF constant c

20

40

60

80

100

120

140

Co
m

pr
es

si
on

 R
at

io

-2 -1.5 -1 -0.5 0 0.5 1

CSF constant c

31

32

33

34

35

36

P
S

N
R

 (d
B

)

(a) CSF constant c vs. CR (b) CSF constant c vs. PSNR

Fig. 9. CSF constant c versus CR, PSNR graphs for Lena image

As seen from Fig. 9, CR is highest for c values around zero, though PSNR is lowest for
these values. An appropriate value of c can be chosen so that the tradeoff between CR and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5067

PSNR is optimum. Linear CSF given in (12) gives good results as we are using CIE La*b*
space which is linear and perceptually uniform. This is evident from the results shown in
Table 1.

Table 1 shows the CR and bpp (bits per pixel) achieved by linear CSF as well as non-linear
CSF for fixed PSNR values. It can be clearly seen that for the same PSNR, CR achieved using
the linear CSF proposed by us is better than the CR achieved by non-linear CSF proposed in
[36]. Though the gain in CR is marginal in case of some images like Baboon, Yacht, Barbara,
etc., compression performance of linear CSF based quantization is never poorer than that of
non-linear CSF based quantization.

Table 1. Effect of linear and non-linear CSF based quantization on compression performance

Image Name PSNR (dB) Non-linear CSF [40] Linear CSF
CR bpp CR bpp

Baboon 30.2 13.95 0.57 14.41 0.55
Goldhill 34.52 34.21 0.23 36.72 0.22

Jupiter-moon 35.07 47.32 0.17 54.23 0.15
Lena 35.13 39.46 0.20 42.12 0.19

Woman-baby 41.4 107.98 0.07 119.63 0.07
Yacht 35.27 26.49 0.30 27.53 0.29

Barbara 34.42 28.84 0.28 30.42 0.26
Average 35.14 42.61 0.19 46.44 0.17

The role of orientation tuning is also considered by using the Orientation Tuning Function

(OTF) as given by (14);





























−

<















−

=

otherwise5.9exp

for 5.9exp
),(2

2

u
v

vu
v
u

vuOTF (14)

If the value of OTF drops below 0.5, OTF value is considered to be 0.5.
Using (9) to (14), the thresholds for DCT basis functions in an M×N matrix are given as;










>>
××

==
×=

0 and 0for
),()(),(N

1

0or 0for
)(),(N

1

),(
vu

vuOTFfCSFvuorm

vu
fCSFvuormvuT (15)

Norm(u,v) are the normalization functions used in 2D-DCT. One thing to note from the
above equation is that value of the threshold for u = 0 and v = 0 is ∞ as value of CSF is zero for
u = 0 and v = 0. Thus, quantization values for the DC coefficient are decided (or calculated)
separately.

Finally, quantization matrix is given by
(,) min((,) , _ max(,))Quant u v T u v range coeff u v= × (16)

where coeff_max is the matrix containing maximum values that DCT coefficients can take for
a given range of spatial frequencies. Stimulus required to generate the matrix [36] is;

5068 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

() ()






















 +







 +

+×=
N

vy
M

uxrangeyxx
2

12cos
2

12cossgn1
2

),(max
ππ (17)

where sgn = +1 or -1 depending on the argument.
Above equation can be modified if the range of intensity values is from –X to +X, as in the

case of a* and b* planes. The modified equation is
() ()















 +







 +

×=
N

vy
M

uxrangeyxx
2

12cos
2

12cossgn
2

),(max
ππ (18)

Quantization value for the DC coefficient is chosen depending upon the maximum value
attained by the DC coefficient of the DCT sub-block that is calculated using (17) and (18). As
quoted in [45], a human being can distinguish at the most 100 distinct luminance values (Lmax =
100). Hence, we quantize the maximum DC coefficient value for L plane of each block size in
100 levels. For example, for an 8×8 L block, maximum DC coefficient value is 800. If this
value is quantized in 100 levels, we end up at a DC quantization value of 8. For 8×8
chrominance a* and b* blocks also, the DC coefficient quantization value is taken as 8.
However, the range of a* and b* planes is -100 to +100 which is double than that of L plane.
Hence, the same DC coefficient quantization value (i.e. 8 in case of 8×8 blocks) results in 200
quantization levels for a* and b* planes. Similarly, DC quantization steps for some of the 16
block sizes are calculated and presented in Table 2.

Table 2. DC coefficient quantization levels for CSF based quantization
Block Size DC coefficient quantization levels

8×8 8
8×16 11
16×8 11

16×16 16
16×24 20
24×16 20
24×24 24
24×32 28
32×24 28
32×32 32

Thus, 32 quantization matrices are generated; 16 for L plane and 16 for a* and b* planes,

using the approach discussed above. However, the quantization matrices for a* and b* planes
are double of the quantization matrices for L plane. Therefore, only 16 quantization matrices
for L plane need to be stored.

3.5 Entropy Coding

Non-zero discrete cosine transformed quantized coefficients of each image sub-block are
zigzag ordered before entropy coding. In this paper, we have used modified binary arithmetic
QM coding as entropy coding technique with our proposed algorithm. Modification of QM
coding used with JPEG to encode variable block size DCT coefficient matrix is
straightforward. Exponential Golomb coding is used for encoding the non-uniform block size
index array, BIdx.

The decoding process is essentially opposite and exact reverse of the complete encoding
process shown in Fig. 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5069

4. Experimental Results and Discussion
Performance of the proposed algorithm is experimentally evaluated using 25 standard test
images of different types and sizes available online at the referenced websites [46, 47]. Peak
Signal to Noise Ratio (PSNR) is used to evaluate the reconstructed image quality whereas
compression performance is tested using bits per pixel (bpp) and CR. If length of the
compressed bitstream is denoted by no_bits, bits per pixel denoted by r is given as

bpp
qp
bitsnor

3
_
××

= (19)

where p and q are the number of rows and columns of the color image, respectively.
Value of CR can be obtained from r using the relation in (20);

r
CR 8

= (20)

All experiments are done on a desktop computer with an Intel Core i7-4770 processor
running at 3.40 GHz with 32 GB DDR4 RAM. MATLAB programming environment is used
for Windows 8 OS.

As discussed earlier, 16 quantization matrices are generated and can be stored at the
encoder and the decoder for the CSF based quantization approach. Alternatively, with some
increase in the computational complexity, quantization matrices can be generated using the
CSF based quantization approach or by interpolation from a single 8×8 quantization matrix for
a given value of CSF constant c. Each value of CSF constant c results in a unique set of
quantization matrices. This fact is used to control the compression quality i.e. the achieved bpp,
CR and PSNR values in the proposed work. A lower absolute value of c will result in higher
compression (CR) and lower reconstructed image quality (PSNR) whereas a higher absolute
value of c yields lower CR and higher PSNR. A value of c = -0.5 is chosen arbitrarily for
comparison and benchmarking so that the JPEG, JPEG-XR and the proposed algorithm yield
exactly same PSNR on the set of test images. However, the final choice of c depends on the
end-user or the application for which the proposed compression scheme is being used. In
JPEG and JPEG-XR, compression quality is controlled by quantization factor or quality factor
(QF). QF is a constant by which the standard JPEG quantization matrices are multiplied in
order to achieve required CR and PSNR. QF can be varied from 1 to 100 in JPEG whereas it
can take values from 1 to 255 in JPEG-XR. Higher value of QF results in high compression
and lower reconstructed image quality and vice versa in JPEG [42]. However, higher value of
QF yields higher reconstructed image quality and hence, less compression in JPEG-XR.

Representative original images from the set of 25 standard test images are shown in Fig. 10
(a) – (e). Images reconstructed using the proposed technique along with bpp and PSNR are
shown in Fig. 11 (a) – (e). It is clear that images with high neighboring interpixel intensity
variations like Baboon yield poor bpp and PSNR. On the other hand, images like Woman-baby,
which contain low neighboring interpixel intensity variations, yield high bpp and PSNR.

(a)Lena (b)Peppers (c)Baboon (d)Yacht (e)Woman-baby

Fig. 10. Original images from the set of 25 standard test images

5070 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

(a)Lena
(r=0.09bpp,
PSNR=33.6dB)

(b)Peppers
(r=0.12bpp,
PSNR=32.6dB)

(c)Baboon
(r=0.22bpp,
PSNR=29.6dB)

(d)Yacht
(r=0.14bpp,
PSNR=32.9dB)

(e)Woman-baby
(r=0.05bpp,
PSNR=39.3dB)

Fig. 11. Images compressed and reconstructed using the proposed algorithm

Results obtained using the proposed scheme are compared with JPEG using 25 standard
test images and also with other related published research works [48-50].

4.1 Comparison with JPEG and JPEG-XR using standard test images

We compare the results obtained using the proposed scheme with JPEG and JPEG-XR [51].
For comparison with JPEG, we use MATLAB’s built-in implementation of the JPEG encoder.
Different parameters need to be set for the JPEG encoder in order to obtain optimum
performance on different images in different situations. For JPEG, compression mode is set to
‘lossy’ and bit depth is set at its default value of 8. For comparison with JPEG-XR, we use an
open source implementation by [52]. Since JPEG and the proposed scheme use
non-overlapping blocks, we turn overlapping off in JPEG-XR for fair comparison of results.
For the same reason, chrominance sub-sampling is also set to 4:2:0 in JPEG-XR. Image
quality or quantization parameter is varied, in both JPEG and JPEG-XR, to get PSNR equal to
that achieved by the proposed scheme for different images.

The benchmarking of the 25 standard test images along with the average results is shown in
Table 3. We vary the quality setting parameter from 11 – 54 for JPEG and from 1 – 85 for
JPEG-XR so as to get same PSNR values for the two algorithms.

Table 3. Comparison with image compression standards using 25 standard test images

Image Name* PSNR (dB) JPEG JPEG-XR Proposed Scheme
r (bpp) CR r (bpp) CR r (bpp) CR

Baboon 29.6 0.26 30.24 0.26 30.35 0.22 36.6
Boats 33.9 0.13 59.9 0.1 77.9 0.11 69.7

Cable-car 32.9 0.15 51.9 0.12 65.5 0.13 59.5
Caster-stand 33.3 0.13 60.6 0.11 71.7 0.12 64.8
Color-bars 43.6 0.13 63.7 0.11 71.2 0.03 310.4

RGB full color cube 37.9 0.09 81.1 0.06 144 0.04 186.9
Cornfield 32.3 0.17 46.4 0.17 48.1 0.16 48.6

Chalk 34.9 0.12 68.2 0.06 137.8 0.08 104.5
Flower 34.4 0.12 69.3 0.09 90.1 0.10 76.2
Flowers 30.96 0.25 31.8 0.13 59.4 0.19 42.9
Goldhill 33.0 0.13 60.6 0.11 76 0.11 75.6

Jupiter-moon close-up 33.4 0.13 63.9 0.11 75.9 0.11 73.9
Jupiter-moon 34.5 0.11 75.9 0.09 85.4 0.07 115.6

Lena 33.6 0.12 64.02 0.09 85.4 0.09 81.3
Monarch 33.7 0.13 60.4 0.11 72.1 0.12 67.1
Peppers 32.6 0.12 65.4 0.09 85.4 0.12 65.6

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5071

Football 31.8 0.18 43.8 0.17 48.1 0.17 46.8
Strawberries-coffee 34.6 0.12 66.03 0.07 120.4 0.08 95.9

Stream 34.5 0.09 81.8 0.07 106.7 0.09 91.6
Woman-baby 39.3 0.08 99.5 0.04 190.4 0.05 168.6

Yacht 32.9 0.15 53.5 0.12 65.5 0.14 57.9
Airplane 33.6 0.13 62.9 0.09 85.4 0.11 73.6
Sailboat 31.7 0.17 46.9 0.14 59.2 0.15 53.7
Tiffany 33.4 0.11 71.6 0.06 128.2 0.09 86.5
Barbara 32.4 0.18 45.4 0.16 50.7 0.14 57.3

Average of 25 std. test images 33.95 0.14 60.99 0.11 85.23 0.11 88.44
*The images are taken from Image processing place [46] and Classic Image processing library [47].

As seen from Table 3, proposed scheme surpasses the bpp and CR achieved by JPEG for

all the standard test images. It can be deduced that the proposed scheme outperforms JPEG by
a large margin in case of images having large smooth regions i.e. low variance images such as
Color bars, Chalk, Jupiter-moon, etc. Due to the use of variable block sizes, low variance
images get divided into larger blocks instead of the conventional 8 × 8 blocks in JPEG. The
proposed scheme performs only marginally better than JPEG for images having high variance
(i.e. more texture) such as Peppers, Football, Cornfield, etc. This is because high variance
images do not benefit from the use of larger block sizes as proposed in the variable block size
algorithm. Due to absence of smooth (low variance) regions, these images get divided into
smaller block sizes only. Proposed scheme achieves, on an average, 45.01% more CR than
JPEG.

Though the proposed scheme achieves 3.63% better CR than JPEG-XR, it performs better
than JPEG-XR only for a few images such as Baboon, Color-bars, RGB full color cube,
Cornfield, Jupiter-moon and Barbara. In case of images such as Football, Goldhill,
Jupiter-moon close-up, etc. JPEG-XR performs marginally better than the proposed scheme.
JPEG-XR outperforms the proposed scheme for rest of the images as evident from Table 3.

Performance of the proposed scheme is also compared with JPEG and JPEG-XR using
rate-distortion curves shown in Fig. 12. Bits per pixel versus PSNR graphs are shown for eight
standard test images. Graphs are plotted by keeping the PSNR achieved using JPEG and
JPEG-XR same as that achieved by the proposed algorithm. Thus, the algorithm having lower
bpp value at the same PSNR can be considered to have better compression performance. As
seen from Fig. 12, performance of the proposed scheme is better than JPEG for all the images
at lower bitrates (i.e. lower bpp values). For the Woman-baby image, performance of the
proposed scheme is better than JPEG at all the bitrates. The proposed scheme performs only
marginally better than JPEG-XR at lower bit rates for images such as Baboon and
Jupiter-moon. Performance of JPEG-XR is marginally better than the proposed scheme for
images such as Woman-baby, Cornfield and Yacht. In general, it can be said that performance
of JPEG-XR is comparable to the proposed scheme at lower bit rates.

It is well-known that JPEG2000 achieves approximately 50% more CR than JPEG [53]
while being 3 to 5 times more complex [54, 55]. Therefore, it is expected that the proposed
scheme may not out-perform JPEG2000. Furthermore, JPEG2000 is a wavelet based
compression scheme unlike the proposed scheme and JPEG-XR, which uses a transform
similar to DCT and a block-based coding structure.

5072 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

PSNR (dB)

29 29.5 30 30.5 31

bi
ts

 p
er

 p
ix

el

0

0.2

0.4

0.6

0.8
Proposed
JPEG

JPEG-XR

 PSNR (dB)

33.5 34 34.5 35 35.5

bi
ts

 p
er

 p
ix

el

0

0.05

0.1

0.15

0.2

0.25
Proposed
JPEG

JPEG-XR

(a) Baboon (b) Jupiter-moon

PSNR (dB)

34 36 38 40 42 44

bi
ts

 p
er

 p
ix

el

0

0.02

0.04

0.06

0.08

0.1

0.12
Proposed
JPEG
JPEG-XR

 PSNR (dB)

31 32 33 34 35 36

bi
ts

 p
er

 p
ix

el

0

0.05

0.1

0.15

0.2

0.25

0.3
Proposed
JPEG

JPEG-XR

(c) Woman-baby (d) Goldhill

PSNR (dB)

30 31 32 33 34 35 36 37

bi
ts

 p
er

 p
ix

el

0

0.1

0.2

0.3

0.4
Proposed
JPEG

JPEG-XR

 PSNR (dB)

31 32 33 34 35 36 37

bi
ts

 p
er

 p
ix

el

0

0.05

0.1

0.15

0.2

0.25

0.3
Proposed
JPEG

JPEG-XR

(e) Yacht (f) Airplane

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5073

PSNR (dB)

30 31 32 33 34 35

bi
ts

 p
er

 p
ix

el

0

0.1

0.2

0.3

0.4

0.5
Proposed
JPEG
JPEG-XR

 PSNR (dB)

31 31.5 32 32.5 33 33.5 34 34.5

bi
ts

 p
er

 p
ix

el

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Proposed
JPEG

JPEG-XR

(g) Cornfield (h) Peppers
Fig. 12. Bits per pixel versus PSNR plots for standard test images

Due to the use of variable non-uniform blocks, the proposed scheme requires more

computations than JPEG. The histogram formation step in the proposed algorithm is the most
computationally intensive step. An image plane of size P×Q is first divided into 8×8
non-overlapping blocks and then a histogram is formed using thresholds Thmn and Thvar. In the
worst case scenario, if none of the histogram rows get merged with another; formation of
histogram itself may require 






 +

×
×





 × 1

3232
QPQP comparisons. However, this scenario is not

expected to occur as we are using image dependent thresholds Thmn and Thvar. After
experimentations, it has been observed that the number of histogram rows varies between 2
and 1167 for the standard test images and synthetic images used for benchmarking.
Considering the number of histogram rows as 1167, the proposed algorithm requires
approximately 1.5 times more computations as compared to JPEG.

4.2 Comparison with contemporary techniques

Proposed scheme is also compared with other contemporary techniques such as those
proposed in [48-50] respectively, as shown in Table 4. [49] has achieved compression using
machine learning techniques. Image is compressed using selected colors during encoding and
missing colors are predicted during decoding. Better compression quality is achieved by
minimizing the prediction error during decoding. Data-hiding and compression tasks are
incorporated seamlessly by [48]. Blocks are embedded with secret data and based on the
current bit being embedded, the block is encoded using either SMVQ or image inpainting. [50]
incorporates HVS based models for thresholding and quantization of coefficients in a wavelet
based compression scheme.

For fair comparison of results, PSNR of the proposed scheme is kept equal to the highest
PSNR achieved by one of the above-mentioned schemes. However, in case of Baboon image,
PSNR of 25.2 dB cannot be achieved using the proposed method. Hence, minimum PSNR
achievable for Baboon i.e. 29.05 dB, is used. Similarly for images; Peppers, Airplane, Tiffany
and Sailboat, minimum PSNR achievable by the proposed scheme is used. As seen from Table
4, our method performs better than almost all the techniques proposed in [48-50]. Note that the
bpp values quoted in [50] are converted to CR using the relation in (26). For comparison with
results in [50], two images, namely, Parrots and Statue, from the LIVE database [56] are used.

5074 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

Table 4. Comparison with other proposed compression schemes

Image
Name

Proposed Scheme Zhang et al.’s scheme Qin et al.’s scheme Sreelekha et al.’s scheme
PLC-1 PLC-2

CR PSNR (dB) CR PSNR (dB) CR PSNR (dB) CR PSNR (dB) CR PSNR (dB)
Lena 105.8 33.0 23.7 33.0 20.66 29.85 - - - -

Peppers 137.2 31.37 22.6 31.0 21.23 30.35 - - - -
Baboon 136.9 29.05 11.4 25.2 - - - - - -
Airplane 174.7 31.98 - - 21.37 29.31 - - - -
Tiffany 157.94 32.5 - - 21.74 30.54 - - - -
Sailboat 141.8 30.76 - - 20.12 28.42 - - - -
Monarch 63.81 33.86 - - - - 40 33.23 40 33.86
Parrots 77.19 36.51 57.14 33.75 57.14 36.51
Statue 89.62 33.67 36.36 32.80 36.36 33.66

5. Conclusion
In this paper, images are compressed using a linear and perceptually uniform CIE La*b* color
space in the JPEG image compression framework instead of the conventional YCbCr color
space. A linear CSF suitable for the linear and perceptually uniform CIE La*b* color space is
proposed. Image dependent variable size sub-blocks generated using the proposed novel
histogram based merging technique are also used instead of the conventional 8×8 image
sub-blocks in JPEG. In other words, images are compressed in the proposed scheme using the
adaptively separated non-uniform blocks in the CIE La*b* color space using the JPEG image
compression framework but our own quantization matrices generated using the proposed
linear CSF function.

The proposed scheme achieves, on an average, 45.01% more CR than JPEG for the same
reconstructed image quality in terms of PSNR. It outperforms JPEG in terms of reconstructed
image quality at lower bitrates. The proposed scheme also yields reconstructed image quality
better than JPEG at all the bitrates for simple, low variance images. The proposed scheme
achieves on an average, 3.63% better CR than JPEG-XR. Performance of JPEG-XR is
comparable to the proposed scheme at lower bit rates only. It is also demonstrated that the use
of linear CSF for the perceptually uniform and linear CIE La*b* color space yields on an
average 8% more compression than the non-linear CSF used with YCbCr color space.

References
[1] J. M. Pascual, H. M. Mora, A. F. Guilló and J. A. López, “Adjustable compression method for

still JPEG images,” Signal Processing: Image Communication, vol. 32, pp. 16-32, March 2015.
Article (CrossRef Link)

[2] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consumer
Electronics, vol. 38, no. 1, pp. xviii—xxxiv, February 1992. Article (CrossRef Link)

[3] J. Mitchell, “Digital compression and coding of continuous-tone still images: Requirements and
guidelines,” ITU-T Recommendation T. 81, 1992.

[4] T. Richter, “JPEG on STEROIDS: Common optimization techniques for JPEG image
compression,” in Proc. of IEEE Intl. Conf. Image Processing (ICIP), pp. 61 – 65, September 25 –
28, 2016. Article (CrossRef Link)

[5] J.-J. Ding, Y.-W. Huang, P.-Y. Lin, S.-C. Pei, H.-H. Chen and Y.-H. Wang, “Two-dimensional
orthogonal DCT expansion in trapezoid and triangular blocks and modified JPEG image
compression,” IEEE Trans. Image Process, vol. 22, no. 9, pp. 3664-3675, September 2013.

https://doi.org/10.1016/j.image.2015.01.004
https://doi.org/10.1109/30.125072
https://doi.org/10.1109/ICIP.2016.7532319

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5075

Article (CrossRef Link)
[6] S. Makrogiannis, P. Schelkens, S. Folopoulos and J. Cornelis, “Region-oriented compression of

color images using fuzzy inference and shape adaptive DCT,” in Proc. of IEEE Intl. Conf. Image
Processing (ICIP), pp. 478 – 481, October 7 – 10, 2001. Article (CrossRef Link)

[7] J. Wu, Y. Xing, G. Shi and L. Jiao, “Image Compression with downsampled and overlapped
transform at low bit rates,” in Proc. of IEEE Intl. Conf. Image Processing (ICIP), pp. 29 – 32,
November 7 – 10, 2009. Article (CrossRef Link)

[8] G. Fracastoro, F. Verdoja, M. Grangetto and E. Magli, “Superpixel-driven graph transform for
image compression,” in Proc. of IEEE Intl. Conf. Image Process. (ICIP), pp. 2631 – 2635,
September 27 – 30, 2015. Article (CrossRef Link)

[9] M. Gordan, S. Meza, M. Cislariu, B. Orza, A. Vlaicu, D. Capatina and I. Stoian, “A fuzzy logic
approach for the fast approximate computation of image transforms from block JPEG DCT
coefficients,” in Proc. of IEEE Intl. Conf. Automation, Quality and Testing, Robotics (AQTR),
pp. 1-6, May 19 – 21, 2016. Article (CrossRef Link)

[10] S. K. Pattanaik and K. K. Mahapatra, “DHT based JPEG image compression using a novel
energy quantization method,” in Proc. of IEEE Intl. Conf. Industrial Technol. (ICIT), pp.
2827-2832, December 15 – 17, 2006. Article (CrossRef Link)

[11] Z. Wang, S. Simon, Y. Baroud and S. M. Najmabadi, “Visually lossless image compression
extension for JPEG based on just-noticeable distortion evaluation,” in Proc. of Intl. Conf.
Systems, Signals Image Process. (IWSSIP), pp. 237-240, September 10 – 12, 2015.
Article (CrossRef Link)

[12] Y. Jiang and M. S. Pattichis, “JPEG image compression using quantization table optimization
based on perceptual image quality assessment,” in Proc. of 45th Asilomar Conf. Signals, Systems
Computers (ASILOMAR), pp. 225-229, November 6 – 9, 2011. Article (CrossRef Link)

[13] X. Zhang, S. Wang, K. Gu, W. Lin, S. Ma and W. Gao, “Just-Noticeable Difference-Based
Perceptual Optimization for JPEG Compression,” IEEE Signal Process. Lett., vol. 24, no. 1, pp.
96-100, January 2017. Article (CrossRef Link)

[14] A. J. Ahumada and H. A. Peterson, “Luminance-model-based DCT quantization for color image
compression,” in Proc. of SPIE, Human Vision, Vis. Process. Digital Display III, pp. 365 – 374,
August 1992. Article (CrossRef Link)

[15] A. B. Watson, “DCTune: A technique for visual optimization of DCT quantization matrices for
individual images,” in Proc. of 24th Soc. Info., Display Digital Technol. Papers, pp. 946 – 949,
1993. Article (CrossRef Link)

[16] X. Zhang, W. Lin and P. Xue, “Improved estimation for just-noticeable visual distortion,” Signal
Process., vol. 85, no. 4, pp. 795 – 808, January 2005. Article (CrossRef Link)

[17] Z. Wei and K. Ngan, “Spatio-temporal just noticeable distortion profile for grey scale
image/video in DCT domain,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 3, pp. 337
– 346, February 2009. Article (CrossRef Link)

[18] L. Ma, K. Ngan, F. Zhang and S. Li, “Adaptive block-size transform based just-noticeable
difference model for images/videos,” Signal Process.:Image Comm., vol. 26, no. 3, pp. 162 –
174, March 2011. Article (CrossRef Link)

[19] I. Hontsch and L. Karam, “Adaptive image coding with perceptual distortion control,” IEEE
Trans. Image Process., vol. 11, no. 3, pp. 213 – 222, August 2002. Article (CrossRef Link)

[20] S.-H. Bae and M. Kim, “A novel DCT-based JND model for luminance adaptation effect in DCT
frequency,” IEEE Signal Process. Lett., vol. 20, no. 9, pp. 893 – 896, September 2013.
Article (CrossRef Link)

[21] S.-H. Bae and M. Kim, “A novel generalized DCT-based JND profile based on an elaborate
CM-JND model for variable block-sized transforms in monochrome images,” IEEE Trans.
Image Process., vol. 23, no. 8, pp. 3227 – 3240, August 2014. Article (CrossRef Link)

[22] N. A. Abu, F. Ernawan, N. Suryana, “A Generic Psychovisual Error Threshold for the
Quantization Table Generation on JPEG Image Compression,” in Proc. of 9th Intl. Coll. Signal

https://doi.org/10.1109/TIP.2013.2268971
https://doi.org/10.1109/ICIP.2001.958155
https://doi.org/10.1109/TIP.2013.2268971
https://doi.org/10.1109/ICIP.2015.7351279
https://doi.org/10.1109/AQTR.2016.7501351
https://doi.org/10.1109/ICIT.2006.372694
https://doi.org/10.1109/ACSSC.2011.6189990
https://doi.org/10.1109/ACSSC.2011.6189990
https://doi.org/10.1109/LSP.2016.2641456
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1666/1/Luminance-model-based-DCT-quantization-for-color-image-compression/10.1117/12.135982.short?SSO=1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.4245&rep=rep1&type=pdf
https://doi.org/10.1016/j.sigpro.2004.12.002
https://doi.org/10.1109/TCSVT.2009.2013518
https://doi.org/10.1016/j.image.2011.02.002
https://doi.org/10.1109/83.988955
https://doi.org/10.1109/LSP.2013.2272193
https://doi.org/10.1109/TIP.2014.2327808

5076 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

Process. Appl., pp. 39 – 43, March 8 – 10, 2013. Article (CrossRef Link)
[23] P. A. M. Oliveira, R. S. Oliveira, R. J. Cintra, F. M. Bayer, A. Madanayake, “JPEG quantisation

requires bit-shifts only,” Electronics Lett., vol. 53, no. 9, pp. 588-590, April 2017.
Article (CrossRef Link)

[24] H.-H. Chen, Y.-W. Huang and J.-J. Ding, “Local prediction based adaptive scanning for JPEG
and H. 264/AVC intra coding,” in Proc. of IEEE Intl. Conf. Image Process. (ICIP), pp.
1636-1640, September 15 – 18, 2013. Article (CrossRef Link)

[25] M. B. Akhtar, A. M. Qureshi, “Optimized run length coding for jpeg image compression used in
space research program of IST,” in Proc. of Intl. Conf. Computer Networks Info. Technol.
(ICCNIT), pp. 81-85, July 11 – 13, 2011. Article (CrossRef Link)

[26] G. Lakhani, “Modifying JPEG binary arithmetic codec for exploiting inter/intra-block and DCT
coefficient sign redundancies,” IEEE Trans. Image Process., vol. 22, no. 4, pp. 1326-1339, April
2013. Article (CrossRef Link)

[27] J.-J. Ding, H.-H. Chen and W.-Y. Wei, “Adaptive Golomb code for joint geometrically
distributed data and its application in image coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 23, no. 4, pp. 661-670, April 2013. Article (CrossRef Link)

[28] V. Hosu, F. Hahn, O. Wiedemann, S.-H. Jung and D. Saupe, “Saliency driven image coding
improves overall percieved JPEG quality,” in Proc. IEEE Pic. Coding Symp. (PCS), December 4
– 7, 2016. Article (CrossRef Link)

[29] L. Jin, K. Egiazarian and C.-C. Jay Kuo, “JPEG based perceptual image coding with block based
image quality metric,” in Proc. of IEEE Intl. Conf. Image Process. (ICIP), pp. 1053-1056, Sept.
30 – Oct. 3, 2012. Article (CrossRef Link)

[30] T. Nguyen, P. Helle, B. Winken, B. Bross, D. Marpe, H. Schwarz and T. Weigand, “Transform
coding techniques in HEVC,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 6, pp. 978 – 989,
December 2013. Article (CrossRef Link)

[31] M. Wein, “Variable block-size transforms for H.264,” IEEE Trans. Circuits and Syst. Video
Technol., vol. 13, no. 7, pp. 604 – 613, July 2003. Article (CrossRef Link)

[32] T. Huang, S. Dong and Y. Tian, “Representing visual objects in HEVC coding loop,” IEEE J.
Emerging Sel. Topics Circuits Syst., vol. 4, no. 1, pp. 5 -16, March 2014. Article (CrossRef Link)

[33] I. Rhee, G. R. Martin, S. Muthukrishnan and R. A. Packwood, “Quadtree-srtuctured
variable-size block-matching motion estimation with minimal error,” IEEE Trans. Circuits Syst.
Video Technol., vol. 10, no. 1, pp. 42 – 50, February 2000. Article (CrossRef Link)

[34] M. Q. Shaw, J. P. Allebach and E. J. Delp, “Color difference weighted adaptive residual
preprocessing using perceptual modeling for video compression,” Signal Process.: Image
Commun., vol. 39, pp. 355-368, November 2015. Article (CrossRef Link)

[35] C.-H. Chou and K.-C. Liu, “Colour image compression based on the measure of just noticeable
colour difference,” IET Image Process., vol. 2, no. 6, pp. 304-322, December 2008.
Article (CrossRef Link)

[36] S. A. Klein, A. D. Silverstein and T. Carney, “Relevance of human vision to JPEG-DCT
compression,” in Proc. of SPIE-The Intl. Soc. Optical Engg., vol. 1666, pp. 200-216, August
1992. Article (CrossRef Link)

[37] E. Dumic, M. Mustra, S. Grgic and G. Gvozden, “Image quality of 4:2:2 and 4:2:0 chroma
subsampling formats,” in Proc. of Intl. Symp. ELMAR, pp. 19-24, September 28 – 30, 2009.

[38] P. Zeng and Z. Chen, “Perceptual quality measure using JND model of the human visual
system,” in Proc. of Intl. Conf. Electric Info. Control Engg. (ICEICE), pp. 2454-2457, April 15 –
17, 2011. Article (CrossRef Link)

[39] A. Ford and A. Roberts, Colour space conversions, 1998. URL: Article (CrossRef Link) [Last
accessed: 13 December 2007] 2011.

[40] M. D. Fairchild, Color appearance models, 2nd Edition, John Wiley & Sons, New York, 2013.
Article (CrossRef Link)

https://doi.org/10.1109/TIP.2014.2327808
https://doi.org/10.1049/el.2016.4342
https://doi.org/10.1109/ICIP.2013.6738337
https://doi.org/10.1109/ICCNIT.2011.6020912
https://doi.org/10.1109/TIP.2012.2228492
https://doi.org/10.1109/TCSVT.2012.2211952
https://doi.org/10.1109/ICIP.2012.6467044
https://doi.org/10.1109/ICIP.2012.6467044
https://doi.org/10.1109/JSTSP.2013.2278071
https://doi.org/10.1109/TCSVT.2003.815380
https://doi.org/10.1109/JETCAS.2014.2298274
https://doi.org/10.1109/76.825857
https://doi.org/10.1016/j.image.2015.04.008
https://doi.org/10.1049/iet-ipr:20080034
https://doi.org/10.1117/12.135968
https://doi.org/10.1109/ICEICE.2011.5778238
http://www.poynton.com/PDFs/coloureq.pdf
https://doi.org/10.1002/9781118653128

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018 5077

[41] G. Sharma and R. Bala, “Digital color imaging handbook,” CRC press, New York, 2002.
Article (CrossRef Link)

[42] R. C. Gonzalez and R. E. Woods, “Digital image processing,” 3rd Edition, Prentice Hall, 2002.
[43] W. B. Pennebaker and J. L. Mitchell, “JPEG: Still image data compression standard,” Springer

Science & Business Media, Massachusetts, 1992.
[44] G. Lakhani, “Improving DC coding models of JPEG arithmetic coder,” IEEE Signal Process.

Lett., vol. 11, no. 5, pp. 505-508, May 2004. Article (CrossRef Link)
[45] C. Poynton, “Color in digital cinema,” C. Swartz (ed.) Understanding Digital Cinema: A

Professional Handbook, Elsevier, pp. 57-82, 2005. Article (CrossRef Link)
[46] Image Databases - Image Processing Place. Article(CrossRefLink)
[47] Classic Image Processing Library. Article (CrossRef Link).
[48] C. Qin, C.-C. Chang and Y.-P. Chiu, “A novel joint data-hiding and compression scheme based

on SMVQ and image inpainting,” IEEE Trans. Image Process., vol. 23, no. 3, pp. 969-978,
March 2014. Article (CrossRef Link)

[49] C. Zhang and X. He, “Image compression by learning to minimize the total error,” IEEE Trans.
Circuits Syst. Video Technol., vol. 23, no. 4, pp. 565-576, April 2013. Article (CrossRef Link)

[50] G. Sreelekha and P. S. Sathidevi, “An HVS based adaptive quantization scheme for the
compression of color images,” Digital Signal Process., vol. 20, no. 4, pp. 1129-1149, July 2010.
Article (CrossRef Link)

[51] F. Dufaux, G. J. Sullivan and T. Ebrahimi, “The JPEG XR image coding standard,” IEEE Signal
Process. Mag., vol. 26, no. 6, November 2009. Article (CrossRef Link)

[52] Article (CrossRef Link)
[53] A. Skodras, C. Christopoulos and T. Ebrahimi, “The JPEG 2000 still image compression

standard,” IEEE Signal Process. Mag., vol. 18, no. 5, pp. 36 - 58, September 2001.
Article (CrossRef Link)

[54] M. W. Marcellin, M. J. Gormish, A. Bilgin and M. P. Boliek, “An overview of JPEG 2000,” In
Proc. of IEEE Data Compression Conf. (DCC), pp. 523 – 541, March 28 – 30, 2000.
Article (CrossRef Link)

[55] D. Santa-Cruz and T. Ebrahimi, “A study of JPEG 2000 still image coding versus other
standards,” in Proc. of 10th European Signal Process. Conf., pp. 1 – 4, September 4 – 8, 2000.

[56] H. R. Sheikh, M. F. Sabir and A. C. Bovik, “A statistical evaluation of recent full reference
quality assessment algorithms,” IEEE Trans. Image Process., vol. 15, no. 11, pp. 3440 – 3451,
November 2006. Article (CrossRef Link)

https://doi.org/10.1201/9781420041484
https://doi.org/10.1109/LSP.2004.826643
https://doi.org/10.1016/B978-0-240-80617-4.50005-7
http://www.imageprocessingplace.com/downloads_V3/dip3e_downloads/dip3e_book_images/
http://www.hlevkin.com/
https://doi.org/10.1109/TIP.2013.2260760
https://doi.org/10.1109/TCSVT.2012.2210803
https://doi.org/10.1016/j.dsp.2009.12.003
https://doi.org/10.1109/MSP.2009.934187
https://archive.codeplex.com/?p=jxrlib
https://doi.org/10.1109/79.952804
https://doi.org/10.1109/DCC.2000.838192
https://doi.org/10.1109/TIP.2006.881959

5078 Samruddhi Y. Kahu et al.: JPEG-based Variable Block-Size Image Compression using CIE La*b* Color Space

Samruddhi Y. Kahu received B.Eng. degree in Electronics and Communication
Engineering from Nagpur University, Nagpur, India in 2011 and M.Tech. degree in
Communication Systems Engineering from Visvsesvaraya National Institute of Technology,
Nagpur, India in 2014 where she is currently pursuing her Ph.D. Her research interests
include image and video compression and processing.

Kishor M. Bhurchandi received his B.Eng. and M.Eng. degrees in electronics
engineering in 1990 and 1992. He further obtained his Ph.D. degree from Visvesvaraya
Regional College of Engineering, Nagpur University, Nagpur, India in 2002, where he is
currently working as a Professor. He is principal investigator of two funded major research
projects in the field of signal processing and embedded systems. He has more than 45
publications to his credit. He has also worked on industrial problems on heavy and in motion
weighing systems. He is the co-author of a popular book titled Advanced Microprocessors
and Peripherals published by McGraw Hill, India. His research interests include color image
processing and analysis, computer vision, digital signal processing and embedded systems.

