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Abstract 
 

In this work we propose a compression technique that makes use of linear and perceptually 
uniform CIE La*b* color space in the JPEG image compression framework to improve its 
performance at lower bitrates. To generate quantization matrices suitable for the linear and 
perceptually uniform CIE La*b* color space, a novel linear Contrast Sensitivity Function 
(CSF) is used. The compression performance in terms of Compression Ratio (CR) and Peak 
Signal to Noise Ratio (PSNR), is further improved by utilizing image dependent, variable and 
non-uniform image sub-blocks generated using a proposed histogram-based merging 
technique. Experimental results indicate that the proposed linear CSF based quantization 
technique yields, on an average, 8% increase in CR for the same reconstructed image quality 
in terms of PSNR as compared to the conventional YCbCr color space. The proposed scheme 
also outperforms JPEG in terms of CR by an average of 45.01% for the same reconstructed 
image quality. 
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1. Introduction 

Since its inception in 1993, JPEG has become a widely used image compression format in 
internet and multimedia applications [1-3]. As a lot of applications and work-flows have 
already been developed around it, its widespread usage remains unabated [4] despite the 
emergence of image compression standards such as JPEG 2000, and HEIC (HEVC still image 
compression standard). The basic block diagram of JPEG is shown in Fig. 1. As noted in Fig. 
1, plenty of research effort has been made on improving the performance of almost all the 
major blocks of JPEG. In [5], trapezoid and triangular blocks are used instead of the regular 
8×8 blocks in JPEG. Shape Adaptive DCT (SA-DCT) has also been used in conventional 
image/video coding algorithms since the 1990s. In [6], image is segmented using splitting and 
merging technique and SA-DCT is used to transform the segmented arbitrary shaped image 
regions. SA-DCT along with overlapped transform is also used in [7] where smooth regions of 
the image are downsampled and then transformed. Superpixel Driven Graph Transform 
(SDGT) is used in [8] instead of SA-DCT. In [8], image is segmented using the graph 
technique and each segment is transformed using SDGT. Authors in [9] have proposed the use 
of fuzzy logic for approximating the 2D-DCT used for transforming image sub-blocks in 
JPEG. Discrete Hartley Transform (DHT) is proposed in [10] as an alternative to DCT for 
image sub-block transformation. As DHT is used, another efficient quantization approach and 
scanning order (in lieu of zigzag scanning order used in JPEG) is proposed in [10]. To enhance 
the quantization performance, Just Noticeable Difference (JND) based quantization 
techniques for JPEG have been proposed in [11-13]. A lot of research has been invested to find 
efficient JND profiles as Human Visual System (HVS) characteristics can be accurately and 
efficiently modeled using JND. As a result, many DCT based JND models have been proposed 
in the past [14 – 21]. A new quantization table is generated for JPEG based on a generic 
psychovisual error threshold in [22]. In [23], the existing transform and quantization 
operations of JPEG are modified so that only bit-shifts are required for quantization operation. 
This leads to lower power consumption while encoding/decoding images. In [24], local 
prediction based adaptive scanning is used instead of conventional zigzag scanning in DCT 
based compression techniques such as JPEG and H.264/AVC-intra. The Run Length Coding 
(RLC) technique of JPEG is further optimized in [25] so that the redundancies in the JPEG’s 
RLC technique are further reduced. In [26], four modifications are proposed to improve the 
efficiency of JPEG’s binary arithmetic QM coding. Adaptive Golomb Coding is used as 
entropy coding in [27] to improve the compression efficiency of JPEG. A saliency based 
approach to improve the performance of JPEG is proposed in [28] and a block-based image 
quality metric is used to improve the rate-quality performance of JPEG in [29]. Apart from 
these techniques, many other optimization techniques have been proposed for the performance 
improvement of JPEG. Interested reader is referred to [4] for more details. 

On the other hand, to the best of the authors’ knowledge, not a lot of research is focused on 
the color space conversion technique used in JPEG. Color space conversion plays an important 
role in any compression scheme as it represents the color image in a color space to minimize 
the psycho-visual redundancies. YCbCr has been conventionally used for coding of images 
and videos as it is a luminance-chrominance color space.  
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Fig. 1. Basic JPEG block diagram with relevant publications in the corresponding area of research 

 
In this paper, we use a perceptually uniform and linear CIE La*b* color space for 

compression of images. Though CIE La*b* color space has been used in past for compression 
of images/videos, it has been majorly used for pre-processing while the actual 
encoding/decoding is done in YCbCr color space [34, 35]. As linear and perceptually uniform 
CIE La*b* color space is used, we use a linear CSF for generation of the quantization matrices. 
Linear CSF used in this work is derived from the CSF proposed by Klein et al. [36]. Besides, a 
novel histogram based approach of dividing the image into variable block sizes is also 
proposed. Variable block size algorithms have come up in the past years and have been 
incorporated in [30 – 33]. They are mostly top-down quad-tree decomposition based 
approaches. These algorithms start from a large, uniform and fixed block called Macro Block 
(MB) typically of size 16×16 or 32×32. Each MB is then divided into smaller non-uniform 
blocks according to the image structure. In this process, though the size of image sub-blocks is 
variable, their positions are fixed. Our algorithm is more compatible to the image structure as 
both size and position of the image blocks are variable.  

To describe the proposed techniques in detail, rest of the paper is organized as follows. In 
Section 2, we discuss the important techniques and concepts leading to the proposed 
techniques. Section 3 presents the proposed techniques while experimental results are 
presented and discussed in Section 4. We conclude this paper in Section 5. 

2. Fundamental Methods and Materials 
In this section, we review some of the fundamental techniques that are utilized in the proposed 
work. 

2.1 CIE La*b* Color Space 
Images are captured and/or displayed by most of the digital devices in RGB color space since 
it is an orthogonal color space and hence is hardware friendly. RGB color space being highly 
correlated is not suitable for compression. Generally, YCbCr color space is used by most of the 
standard image and video compression systems as it is a highly decorrelated 
luminance-chrominance color space. However, in this paper, we have used CIE La*b* color 
space instead of YCbCr due to its inherent advantages which are discussed as follows: 
1) Like YCbCr, La*b* is also a luminance-chrominance color space. Therefore, it gives high 

decorrelation and hence chrominance subsampling [37] can be effectively implemented.  
2) La*b* color space is a color-opponent color space with dimensions L for lightness and a* 

and b* for the color-opponent dimensions, based on nonlinearly-compressed CIE XYZ 
color space coordinates. The three planes L, a* and b* have pixel intensity ranges; L [0, 
100], a* [-100, 100] and b* [-100, 100]. Hence, L plane can be represented using 7 
bits/pixel as against the 8 bits/pixel required by Y plane of YCbCr. This itself contributes to 
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a saving of 1 bit/pixel. The values that a pixel can take in a* and b* plane are centered on 0. 
Hence, there is no need of level shifting for a* and b* planes unlike YCbCr where level 
shifting is required for all the three planes.  

3) CIE La*b* is a linear and perceptually uniform color space [35]. Hence quantization can be 
implemented effectively without perceptual loss of visual quality. 

4) Another advantage of CIE La*b* is that it is a device independent color space [38]. 
Since authentic direct color conversion formulae for converting from RGB to CIE La*b* 

color space are not available, we first convert to CIE XYZ and then to La*b*. For conversion to 
CIE XYZ color space, gamma-corrected RGB values are converted to linear RGB values  
before applying the following conversion formula [39]; 
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where R, G, B are the linear RGB values. 
Conversion from CIE XYZ to CIE La*b* [34, 40, 41] is accomplished using (2), (3) and (4) 

as discussed below: 
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where X, Y, Z are calculated using (1) above and Xn, Yn, Zn are the tri-stimulus values of the 
adapting white [34, 40, 41]. The function f used in (2), (3) and (4) is given as; 
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2.2 Exponential Golomb Coding 

Exponential Golomb codes were first proposed for the representation of non-negative integers 
with exponentially decaying probability distribution [42]. Exponential Golomb codes offer a 
host of advantages over other DCT based entropy coding techniques. Firstly, they don’t 
require look-up tables to provide supplemental information to the encoder. And secondly, 
theoretically they can be used to encode a data source with an infinite number of possible 
symbols unlike Huffman coding [27]. Given a non-negative integer n, the zeroth order 
exponential Golomb code of n is represented as 0 ( )exp nG  and can be computed using following 
steps:  
Step 1: Calculate prefix m from the symbol to be coded n using, 

( ) 1log2 += nm                                                                                                                     (6) 
and form the unary code of m (unary code of a number x is the number of x zeros followed by 
1). 
Step 2: Determine the binary representation of 
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( 1) 2mn + −                                                                                                                             (7) 
truncated to m least significant bits. 
Step 3: Concatenated binary representation of results of steps 1 and 2 is the exponential 
Golomb code of n. 

2.3 Binary Arithmetic (QM) Coding 

Binary arithmetic coding is used as an entropy coding technique in many image/video 
compression algorithms. QM-coder is a version of binary arithmetic coding used with some 
implementations of the JPEG standard [3, 43]. The process of binary arithmetic QM coding is 
presented here in brief. 

In binary arithmetic QM coding, instead of coding symbols 0 and 1 directly, they are 
mapped to most probable symbol (MPS) or least probable symbol (LPS). The basic idea 
behind this mapping is that when a completely black image (black denoted by 0) has a small 
white patch (white denoted by 1) in it, 0 is mapped to MPS while 1 is mapped to LPS. 
Whenever a symbol is input, QM coder first decides whether it is MPS or LPS based on the 
symbols input in the past with the help of probability estimation tables and then encodes it. 

Suppose we have an interval A and the LPS probability estimate is Qe, MPS probability 
estimate will obviously be 1 – Qe since there are only two possible input symbols. The interval 
A is then divided into two parts by the QM coder such that LPS sub-interval is A×Qe and the 
MPS sub-interval is A×(1 – Qe). The positioning and sizes of the sub-intervals according to 
convention is depicted in Fig. 2. The input symbol sequence of MPS and LPS is encoded into 
a code stream (pointer) C by QM coder. Ideally, C can point anywhere in the current interval 
(either MPS or LPS) but for ease of operation, QM coder points C at the bottom of the current 
interval. 

 
Fig. 2. Interval Subdivision in QM Coder 

3. Proposed Work 
Flowchart of the proposed JPEG-based image compression scheme is shown in Fig. 3. The 
blocks that are modified as compared to the basic JPEG block diagram in Fig. 1 are 
highlighted. The structure of Fig. 3 is deliberately kept similar to that in Fig. 1 in order to 
highlight the modifications and bring out the differences.  

In this scheme, classification and subsequent grouping of adjacent 8×8 blocks based on 
their similarity in terms of mean and variance is incorporated in CIE La*b* color space. This 
results in the formation of blocks of 10 different sizes. Most of the HVS based quantization 
techniques for DCT are proposed for perceptually non-uniform and non-linear YCbCr color 
space and fixed block sizes. We propose modifications to make them suitable for the 
perceptually linear and uniform CIE La*b* color space and for the image-dependent 
non-uniform image sub-blocks, as it is more pragmatic. Important and highlighted (modified) 
blocks/steps of the algorithm presented in Fig. 3 are explained below in detail. 

A 0A(1 – Qe)

LPS Sub-interval
= A × Qe

MPS Sub-interval
= A(1 – Qe)  
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Input 
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CIE La*b*
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Subsampling 
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non-uniform blocks

2D-DCTCSF based 
Quantization

Zigzag 
Ordering

Run-Length 
Coding

QM Coding for 
image sub-blocks

Output 
Bitstream

Exp. Golomb Coding 
for Block Size Indices

Block Size Index Array BIdx

Entropy Coding  
Fig. 3. Flowchart of the encoder of the proposed scheme 

3.1 Conversion to CIE La*b* Color Space 

Input RGB image is first converted to CIE La*b* using (1) to (5) given in section 2.1.  
Since human eye is less sensitive to chrominance information than luminance, 

chrominance subsampling is applied on a* and b* planes. Subsampling ratio of 4:2:0 is used 
[37]. In other words, a* and b* planes are subsampled by a factor of 2 both horizontally and 
vertically.  

As mentioned in section 2.1, since the intensity values of a* and b* color planes are already 
centered on zero, there is no need of level shifting for a* and b* planes. However, a value of 50 
is subtracted from each pixel intensity value of the L plane in order to center the mean of L 
plane on zero, in the proposed algorithm. Rest of the steps of the proposed algorithm are same 
for level shifted L plane and subsampled chrominance planes a* and b*. 

3.2 Division into variable non-uniform blocks 

The proposed algorithm uses blocks of different rectangular shapes and sizes as against the 
uniform 8×8 sized blocks used by most of the image compression algorithms. Sixteen different 
block sizes are used in the proposed work, smallest being 8×8 and the largest, 32×32. The 
process of division into these non-uniform blocks is described below with the help of Fig. 4. 

    
(a) Division into 8×8 blocks (b) Mean plane (normalized) (b) Variance plane 

(normalized) 
(d) Division into 
non-uniform blocks 

Fig. 4. Process of histogram based merging on Lena 

3.2.1 8×8 blocks 

Initially, the input image is divided into the smallest size 8×8 non-overlapping uniform blocks 
just like in JPEG and as shown in Fig. 4 (a). 
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3.2.2 Indexed histogram based merging 

Mean and variance of each 8×8 block is calculated. Only first two statistical moments i.e. 
mean and variance are used to describe the characteristics of the 8×8 blocks. Thus, for each 
sub-plane (L, a* or b*) of an input image I of size P×Q, we have two planes each of size 
P/8×Q/8; namely mean plane containing all mean values of 8×8 blocks of the image shown in 
Fig. 4 (b) and variance plane having all variances of 8×8 blocks of the image shown in Fig. 4 
(c). Mean and variance values of 8×8 image sub-blocks are displayed in Fig. 4 (b) and Fig. 4 
(c). These values are normalized to the range 0 to 255 only for display purpose so that the 
information contained in them is clearly visible. However, for the indexed histogram 
formation and subsequent grouping, original mean and variance values are used. This data is 
stored in a 3 dimensional matrix (A) with two P/8×Q/8 planes. Thus, A(1:P/8,1:Q/8,1) denotes 
the mean plane and A(1:P/8,1:Q/8,2) denotes the variance plane.  

A histogram table is formed using these values and statistical bin size thresholds are chosen 
as discussed further. A sample indexed histogram table structure is shown in Fig. 5. 
 

 
 
The histogram formation process is described as below; 

1) Initialize an indexed histogram table structure H with k = 1 row and four columns, namely 
index, mean, variance and population. The number of rows k goes on increasing if the next 
block [mean, variance] is different than the earlier registered one [mean, variance] using 
thresholds Thmn and Thvar. 

2) Initialize the first entry in the table by the mean and variance of the first 8×8 image block 
that is the top left corner block in the image and population and index to 1. 
H(1,2:3) = A(1,1,1:2), H(1,4) = 1 and H(1,1) = 1. 

3) Scan the matrix A along the rows and read the next mean and variance values stored in A. 
Compare every new pair of mean and variance stored in matrix A with all the earlier 
recorded mean and variance pairs in H and increment the population of that row of H which 
satisfies the condition given in (8), else record mean and variance values at that location of 
A in the next new row of H and initialize its population to 1. 

 ( ) ( )var)3,()2,,()2,()1,,( ThkHnmAANDThkHnmA mn <−<−                                                        (8) 

The thresholds Thmn and Thvar are obtained by calculating standard deviation of the mean 
and variance values in the mean plane and variance plane, respectively. 

Note that, here, Thmn is used to threshold the difference between mean values and similarly, 
Thvar is used to threshold the difference between variance values. Hence, standard deviation of 
the respective values is used as the threshold. In addition to the formation of the histogram 
table H, a new index matrix Idx of size P/8×Q/8 is formed simultaneously. Idx contains the 
indices of all the block locations in matrix A, as indicated by histogram table H. These indices 

Index No. Mean Variance Population 
1 15.64 0.79 50 
2 13.72 0.35 217 
3 19.42 1.31 41 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
    

Fig. 5. Indexed Histogram Table H with arbitrary data. 
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in Idx are further used for grouping of the adjacent blocks. If indices of the immediate 
neighbouring blocks (N4) are same, then blocks are merged to form bigger blocks. 

3.2.3 Merging of adjacent blocks 

Adjacent blocks are grouped based on the index matrix Idx to form blocks of sizes 32×32, 
32×24, 24×32, 24×24, 32×16, 16×32, and so on, till 8×8. These block sizes are allotted indices 
from 15 to 0, respectively. Note that all possible combinations of block sizes starting from 
32×32 till 8×8 in steps of 8 are used.  

The highest block size chosen is 32×32. This is because sharpness of human vision is 
highest in the fovea region covering approximately 2° of visual angle. This corresponds to a 
radius of approximately 40 pixels for Λ = 1.5 min/pixel for normal viewing distance. Thus a 
32×32 image sub-block is faithfully covered by the visual angle [21]. Smallest block size 
considered is 8×8 in accordance with the JPEG standard. In the above procedure, vertical 
block sizes such as blocks 32×24, 24×16, 32×16, etc. are considered before horizontal blocks 
24×32 or 16×32 as natural images contain more vertical structures than horizontal ones [44]. 
Experimental analysis shows that natural images contain very less number of block sizes 
greater than 32×32. Thus, considering block sizes greater than 32×32 will further increase the 
blocking overhead and the compression performance may deteriorate. 

Further, a block size index array, BIdx, is constructed using Idx and the block indices 0 to 
15. BIdx indicates the spatial position and its block index in the image and is used, further, for 
forming the compressed bitstream. The same BIdx will be used at the decoder to decode the 
image. Section of a sample index matrix Idx is shown in Fig. 6 (a). Adjacent blocks having 
same indices are merged to form bigger non-uniform blocks which are shown using different 
colors. Fig. 6 (b) shows a sample block size index array BIdx formed using the sample index 
matrix of Fig. 6 (a). The algorithm used for merging is diagrammatically explained using Fig. 
7 and summarized in the form of a pseudo code in Algorithm 1. 

It is clearly evident from Algorithm 1 that priority is given for the formation of bigger 
block sizes such as 32×32, 32×24, 24×24 etc. Thus, the order in which blocks are checked for 
merging based on Idx is: 32×32, 32×24, 24×24, 32×16, 16×32, 24×16, 16×24, 16×16, 32×8, 
8×32, 24×8, 8×24, 16×8, 8×16 and 8×8. In this way, the complete image is encoded and a 
block index array named BIdx is formed. This block index array is compressed using 
exponential Golomb coding and sent to the decoder as overhead information along with the 
compressed image blocks. 
 

32 32 32 32 40 40 39 39 39 36 36 5
32 32 32 32 40 40 19 43 43 36 36 5
32 32 32 32 40 39 24 15 43 43 17 5
32 32 32 32 40 39 40 38 15 13 14 5
18 18 18 32 32 32 33 33 36 38 39 5
18 18 18 32 32 32 33 33 12 17 10 10
18 18 18 18 17 16 33 33 37 37 37 37  

16 8 3 4 … … 6  

(a) Section of a sample index matrix Idx (b) Corresponding block size index 
array BIdx 

Fig. 6. Sample Idx and BIdx matrices 
  
Algorithm 1: Grouping of adjacent 8×8 image sub-blocks 
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Input:    Index matrix Idx, Input image plane (L, a* or b*) of size P×Q 
Output: Block size index array BIdx, compressed codestream  
begin 

1. Initially set index variables to zero, i = 0, j = 0 and p = 1. 
Following steps are executed until all the 8×8 blocks of the image are encoded: 
2. If all values of matrix Idx(i:i+3,j:j+3) are same 

Code 32×32 block of the image plane; 
BIdx(p) = 16; 
j = j + 3; 

3. Else check all values of matrix Idx(i:i+3,j:j+2), if same 
Code 32×24 block of the image plane; 
BIdx(p) = 15; 
j = j + 2; 

4. Else check values of matrix Idx(i:i+2,j:j+3), if same 
Code 24×32 block of the image plane; 
BIdx(p) = 14; 
j = j + 3; 

5. Else check values of matrix Idx(i:i+2,j:j+2), if same 
Code 24×24 block of the image plane; 
BIdx(p) = 13; 
j = j + 2; 

6. … 
7. … 

… 
      10.   Code 8×8 block of the image plane; 
              BIdx(p) = 0; 
              j = j + 1; 
      11.   p = p + 1; Increment i appropriately; 
end 

Indices different?

4 × 4 4 × 4 4 × 3 4 × 4 3 × 4 4 × 4

3 × 33 × 44 × 34 × 4

Index matrix Idx

Q/8

P/
8 Indices sam

e?

Indices different?

Indices sam
e?

Indices different?

Indices sam
e?

 
 

Fig. 7. Example Grouping of adjacent 8×8 image sub-blocks using index matrix Idx 
 

Thus, after similarity based merging of adjacent 8×8 blocks, the input image gets divided 
into non-uniform blocks as seen in Fig. 4 (d). The above splitting and merging algorithm is 
implemented on the level shifted L plane and subsampled a* and b* planes separately as all the 
three planes are compressed separately. Fig. 4 (d) shows the results of division of L plane only. 
Colored image is shown instead of the gray scale luminance image for better understanding. 
From Fig. 4 (d), it can be clearly seen that smooth regions have larger blocks whereas edges 
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and textured regions get divided into smaller blocks, more specifically, 8×8 blocks. Horizontal 
and vertical edges get divided into preferably 8×32, 8×24, 8×16 and 32×8, 24×8, 16×8 sized 
blocks, respectively. 

However, division into non-uniform blocks may not be properly justified from Fig. 4 (d) as 
regions appearing uniform are shown to be divided into smaller blocks. Hence, a simple color 
image shown in Fig. 8 (a) is used to illustrate the result of division into non-uniform blocks. 
Fig. 8 (b) shows the results of splitting and merging algorithm implemented on level shifted L 
plane of Fig. 8 (a) justifying the division into non-uniform blocks. However, there are still 
some discrepancies as red and pink colored stripes are getting merged with gray colored 
boundary region in single 32×32 blocks. Similarly, yellow, green and aqua colors are also 
getting merged. This happens as luminance values of red, pink and gray colors and that of 
yellow, green and aqua colors are similar as seen from Fig. 8 (c). This is taken care of by 
implementation of this algorithm on subsampled chrominance planes. Result of division of 
chrominance b* plane into non-uniform blocks is shown in Fig. 8 (d). In Fig. 8 (d), all the 
color components are getting divided faithfully. This also justifies the need of implementation 
of the splitting and merging algorithm on the three image planes separately. As compared to 
the hierarchical variable block size algorithm of H.264 or HEVC, our algorithm is more 
compatible to the image structure as both size and position of the image blocks are variable. 
 

  
(a) Original Image (b) Division of L plane into non-uniform blocks 

(color image shown for illustrative purpose only) 

  
(c) Grey scale image of L plane divided into 

non-uniform blocks 
(d) Chrominance b* plane divided into 

non-uniform blocks 
Fig. 8. Process of histogram based merging on color bars image 

 
The M×N image sub-blocks thus formed, are transformed into M×N spectral domain 

coefficients using two-dimensional Discrete Cosine Transform (2D-DCT). 

3.4 CSF based Quantization 

Since non-uniform block sizes are used, we need quantization matrices of sizes suitable for the 
16 different block sizes. CSF based quantization method proposed in [36] is modified and used 
for the generation of quantization matrices. Though [36] describes quantization matrix 
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generation for 8×8 block size only, this method is heuristically extended for the generation of 
quantization matrices for all other non-uniform block sizes. As CIE La*b* space is used in the 
proposed scheme, a linear CSF is used for the generation of quantization matrices. As the 
range of intensity values is different for L plane and a* and b* planes, different set of 
quantization matrices are generated for L plane and a* and b* planes. CSF for quantization 
matrix generation as given in [36] is 

( ) 100 exp( 0.13 )CSF f f f= −                                                                                                    (8) 
where f is spatial frequency in cycles/degrees, given by 

Λ×
+

=
8

30),(
22 vuvuf                                                                                                            (9) 

where u,v are co-ordinates of the DCT block. Pixel size Λ is assumed to be 1.5 min/pixel [36]. 
Above equation gives frequency matrix for 8×8 block size only. Hence, the factor of 8 in the 
denominator of this equation. This equation can be extended to find frequency for any M×N 
size block using (10); 

Λ×
+

=
Nn

vuvuf
22

30),(                                                                                                                 (10) 

where Nn is given by (11) as follows 
Nn M N= ×                                                                                                                           (11) 

Since we are using CIE La*b* color space for compression, a linear CSF given by (12) 
below is used in this paper for quantization matrix generation. 

)()( maxffcfCSF −=                                                                                                                      (12) 

where f is given by (10) and fmax is the maximum frequency in an M×N image sub-block and is 
calculated using the formula shown below 

Λ×
+

=
Nn

NMf
22

max 30                                                                                                                (13) 

In (12), c is a constant which governs the performance and quality of reconstructed image 
in terms of CR and PSNR as shown in Fig. 9. 

 

-2 -1.5 -1 -0.5 0 0.5 1

CSF constant c

20

40

60

80

100

120

140

Co
m

pr
es

si
on

 R
at

io

 
-2 -1.5 -1 -0.5 0 0.5 1

CSF constant c

31

32

33

34

35

36

P
S

N
R

 (d
B

)

 
(a) CSF constant c vs. CR (b) CSF constant c vs. PSNR 

Fig. 9. CSF constant c versus CR, PSNR graphs for Lena image 
 

As seen from Fig. 9, CR is highest for c values around zero, though PSNR is lowest for 
these values. An appropriate value of c can be chosen so that the tradeoff between CR and 
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PSNR is optimum. Linear CSF given in (12) gives good results as we are using CIE La*b* 
space which is linear and perceptually uniform. This is evident from the results shown in 
Table 1. 

Table 1 shows the CR and bpp (bits per pixel) achieved by linear CSF as well as non-linear 
CSF for fixed PSNR values. It can be clearly seen that for the same PSNR, CR achieved using 
the linear CSF proposed by us is better than the CR achieved by non-linear CSF proposed in 
[36]. Though the gain in CR is marginal in case of some images like Baboon, Yacht, Barbara, 
etc., compression performance of linear CSF based quantization is never poorer than that of 
non-linear CSF based quantization. 

 
Table 1. Effect of linear and non-linear CSF based quantization on compression performance 

Image Name PSNR (dB) Non-linear CSF [40] Linear CSF 
CR bpp CR bpp 

Baboon 30.2 13.95 0.57 14.41 0.55 
Goldhill 34.52 34.21 0.23 36.72 0.22 

Jupiter-moon 35.07 47.32 0.17 54.23 0.15 
Lena 35.13 39.46 0.20 42.12 0.19 

Woman-baby 41.4 107.98 0.07 119.63 0.07 
Yacht 35.27 26.49 0.30 27.53 0.29 

Barbara 34.42 28.84 0.28 30.42 0.26 
Average 35.14 42.61 0.19 46.44 0.17 

 
The role of orientation tuning is also considered by using the Orientation Tuning Function 

(OTF) as given by (14); 
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If the value of OTF drops below 0.5, OTF value is considered to be 0.5. 
Using (9) to (14), the thresholds for DCT basis functions in an M×N matrix are given as; 
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vu
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Norm(u,v) are the normalization functions used in 2D-DCT. One thing to note from the 
above equation is that value of the threshold for u = 0 and v = 0 is ∞ as value of CSF is zero for 
u = 0 and v = 0. Thus, quantization values for the DC coefficient are decided (or calculated) 
separately. 

Finally, quantization matrix is given by 
( , ) min( ( , ) , _ max( , ))Quant u v T u v range coeff u v= ×                                                         (16) 

where coeff_max is the matrix containing maximum values that DCT coefficients can take for 
a given range of spatial frequencies. Stimulus required to generate the matrix [36] is;  
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where sgn = +1 or -1 depending on the argument.  
Above equation can be modified if the range of intensity values is from –X to +X, as in the 

case of a* and b* planes. The modified equation is  
( ) ( )
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Quantization value for the DC coefficient is chosen depending upon the maximum value 
attained by the DC coefficient of the DCT sub-block that is calculated using (17) and (18). As 
quoted in [45], a human being can distinguish at the most 100 distinct luminance values (Lmax = 
100). Hence, we quantize the maximum DC coefficient value for L plane of each block size in 
100 levels. For example, for an 8×8 L block, maximum DC coefficient value is 800. If this 
value is quantized in 100 levels, we end up at a DC quantization value of 8. For 8×8 
chrominance a* and b* blocks also, the DC coefficient quantization value is taken as 8. 
However, the range of a* and b* planes is -100 to +100 which is double than that of L plane. 
Hence, the same DC coefficient quantization value (i.e. 8 in case of 8×8 blocks) results in 200 
quantization levels for a* and b* planes. Similarly, DC quantization steps for some of the 16 
block sizes are calculated and presented in Table 2. 
 

Table 2. DC coefficient quantization levels for CSF based quantization 
Block Size DC coefficient quantization levels 

8×8 8 
8×16 11 
16×8 11 

16×16 16 
16×24 20 
24×16 20 
24×24 24 
24×32 28 
32×24 28 
32×32 32 

 
Thus, 32 quantization matrices are generated; 16 for L plane and 16 for a* and b* planes, 

using the approach discussed above. However, the quantization matrices for a* and b* planes 
are double of the quantization matrices for L plane. Therefore, only 16 quantization matrices 
for L plane need to be stored. 

3.5 Entropy Coding 

Non-zero discrete cosine transformed quantized coefficients of each image sub-block are 
zigzag ordered before entropy coding. In this paper, we have used modified binary arithmetic 
QM coding as entropy coding technique with our proposed algorithm. Modification of QM 
coding used with JPEG to encode variable block size DCT coefficient matrix is 
straightforward. Exponential Golomb coding is used for encoding the non-uniform block size 
index array, BIdx. 

The decoding process is essentially opposite and exact reverse of the complete encoding 
process shown in Fig. 3. 
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4. Experimental Results and Discussion 
Performance of the proposed algorithm is experimentally evaluated using 25 standard test 
images of different types and sizes available online at the referenced websites [46, 47]. Peak 
Signal to Noise Ratio (PSNR) is used to evaluate the reconstructed image quality whereas 
compression performance is tested using bits per pixel (bpp) and CR. If length of the 
compressed bitstream is denoted by no_bits, bits per pixel denoted by r is given as 

bpp
qp
bitsnor

3
_
××

=                                                                                                                   (19) 

where p and q are the number of rows and columns of the color image, respectively. 
Value of CR can be obtained from r using the relation in (20); 

r
CR 8

=                                                                                                                                        (20) 

All experiments are done on a desktop computer with an Intel Core i7-4770 processor 
running at 3.40 GHz with 32 GB DDR4 RAM. MATLAB programming environment is used 
for Windows 8 OS. 

As discussed earlier, 16 quantization matrices are generated and can be stored at the 
encoder and the decoder for the CSF based quantization approach. Alternatively, with some 
increase in the computational complexity, quantization matrices  can be generated using the 
CSF based quantization approach or by interpolation from a single 8×8 quantization matrix for 
a given value of CSF constant c. Each value of CSF constant c results in a unique set of 
quantization matrices. This fact is used to control the compression quality i.e. the achieved bpp, 
CR and PSNR values in the proposed work. A lower absolute value of c will result in higher 
compression (CR) and lower reconstructed image quality (PSNR) whereas a higher absolute 
value of c yields lower CR and higher PSNR. A value of c = -0.5 is chosen arbitrarily for 
comparison and benchmarking so that the JPEG, JPEG-XR and the proposed algorithm yield 
exactly same PSNR on the set of test images. However, the final choice of c depends on the 
end-user or the application for which the proposed compression scheme is being used. In 
JPEG and JPEG-XR, compression quality is controlled by quantization factor or quality factor 
(QF). QF is a constant by which the standard JPEG quantization matrices are multiplied in 
order to achieve required CR and PSNR. QF can be varied from 1 to 100 in JPEG whereas it 
can take values from 1 to 255 in JPEG-XR. Higher value of QF results in high compression 
and lower reconstructed image quality and vice versa in JPEG [42]. However, higher value of 
QF yields higher reconstructed image quality and hence, less compression in JPEG-XR. 

Representative original images from the set of 25 standard test images are shown in Fig. 10 
(a) – (e). Images reconstructed using the proposed technique along with bpp and PSNR are 
shown in Fig. 11 (a) – (e). It is clear that images with high neighboring interpixel intensity 
variations like Baboon yield poor bpp and PSNR. On the other hand, images like Woman-baby, 
which contain low neighboring interpixel intensity variations, yield high bpp and PSNR. 

     
(a)Lena (b)Peppers (c)Baboon (d)Yacht (e)Woman-baby 

Fig. 10. Original images from the set of 25 standard test images 
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(a)Lena  
(r=0.09bpp, 
PSNR=33.6dB) 

(b)Peppers 
(r=0.12bpp, 
PSNR=32.6dB) 

(c)Baboon 
(r=0.22bpp, 
PSNR=29.6dB) 

(d)Yacht 
(r=0.14bpp, 
PSNR=32.9dB) 

(e)Woman-baby 
(r=0.05bpp,  
PSNR=39.3dB) 

Fig. 11. Images compressed and reconstructed using the proposed algorithm 
 

Results obtained using the proposed scheme are compared with JPEG using 25 standard 
test images and also with other related published research works [48-50]. 

4.1 Comparison with JPEG and JPEG-XR using standard test images 

We compare the results obtained using the proposed scheme with JPEG and JPEG-XR [51]. 
For comparison with JPEG, we use MATLAB’s built-in implementation of the JPEG encoder. 
Different parameters need to be set for the JPEG encoder in order to obtain optimum 
performance on different images in different situations. For JPEG, compression mode is set to 
‘lossy’ and bit depth is set at its default value of 8. For comparison with JPEG-XR, we use an 
open source implementation by [52]. Since JPEG and the proposed scheme use 
non-overlapping blocks, we turn overlapping off in JPEG-XR for fair comparison of results. 
For the same reason, chrominance sub-sampling is also set to 4:2:0 in JPEG-XR. Image 
quality or quantization parameter is varied, in both JPEG and JPEG-XR, to get PSNR equal to 
that achieved by the proposed scheme for different images.  

The benchmarking of the 25 standard test images along with the average results is shown in 
Table 3. We vary the quality setting parameter from 11 – 54 for JPEG and from 1 – 85 for 
JPEG-XR so as to get same PSNR values for the two algorithms.  

 
Table 3. Comparison with image compression standards using 25 standard test images 

Image Name* PSNR (dB) JPEG JPEG-XR Proposed Scheme 
r (bpp) CR r (bpp) CR r (bpp) CR 

Baboon 29.6 0.26 30.24 0.26 30.35 0.22 36.6 
Boats 33.9 0.13 59.9 0.1 77.9 0.11 69.7 

Cable-car 32.9 0.15 51.9 0.12 65.5 0.13 59.5 
Caster-stand 33.3 0.13 60.6 0.11 71.7 0.12 64.8 
Color-bars 43.6 0.13 63.7 0.11 71.2 0.03 310.4 

RGB full color cube 37.9 0.09 81.1 0.06 144 0.04 186.9 
Cornfield 32.3 0.17 46.4 0.17 48.1 0.16 48.6 

Chalk 34.9 0.12 68.2 0.06 137.8 0.08 104.5 
Flower 34.4 0.12 69.3 0.09 90.1 0.10 76.2 
Flowers 30.96 0.25 31.8 0.13 59.4 0.19 42.9 
Goldhill 33.0 0.13 60.6 0.11 76 0.11 75.6 

Jupiter-moon close-up 33.4 0.13 63.9 0.11 75.9 0.11 73.9 
Jupiter-moon 34.5 0.11 75.9 0.09 85.4 0.07 115.6 

Lena 33.6 0.12 64.02 0.09 85.4 0.09 81.3 
Monarch 33.7 0.13 60.4 0.11 72.1 0.12 67.1 
Peppers 32.6 0.12 65.4 0.09 85.4 0.12 65.6 
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Football 31.8 0.18 43.8 0.17 48.1 0.17 46.8 
Strawberries-coffee 34.6 0.12 66.03 0.07 120.4 0.08 95.9 

Stream 34.5 0.09 81.8 0.07 106.7 0.09 91.6 
Woman-baby 39.3 0.08 99.5 0.04 190.4 0.05 168.6 

Yacht 32.9 0.15 53.5 0.12 65.5 0.14 57.9 
Airplane 33.6 0.13 62.9 0.09 85.4 0.11 73.6 
Sailboat 31.7 0.17 46.9 0.14 59.2 0.15 53.7 
Tiffany 33.4 0.11 71.6 0.06 128.2 0.09 86.5 
Barbara 32.4 0.18 45.4 0.16 50.7 0.14 57.3 

Average of 25 std. test images 33.95 0.14 60.99 0.11 85.23 0.11 88.44 
*The images are taken from Image processing place [46] and Classic Image processing library [47]. 

 
As seen from Table 3, proposed scheme surpasses the bpp and CR achieved by JPEG for 

all the standard test images. It can be deduced that the proposed scheme outperforms JPEG by 
a large margin in case of images having large smooth regions i.e. low variance images such as 
Color bars, Chalk, Jupiter-moon, etc. Due to the use of variable block sizes, low variance 
images get divided into larger blocks instead of the conventional 8 × 8 blocks in JPEG. The 
proposed scheme performs only marginally better than JPEG for images having high variance 
(i.e. more texture) such as Peppers, Football, Cornfield, etc. This is because high variance 
images do not benefit from the use of larger block sizes as proposed in the variable block size 
algorithm. Due to absence of smooth (low variance) regions, these images get divided into 
smaller block sizes only. Proposed scheme achieves, on an average, 45.01% more CR than 
JPEG. 

Though the proposed scheme achieves 3.63% better CR than JPEG-XR, it performs better 
than JPEG-XR only for a few images such as Baboon, Color-bars, RGB full color cube, 
Cornfield, Jupiter-moon and Barbara. In case of images such as Football, Goldhill, 
Jupiter-moon close-up, etc. JPEG-XR performs marginally better than the proposed scheme. 
JPEG-XR outperforms the proposed scheme for rest of the images as evident from Table 3. 

Performance of the proposed scheme is also compared with JPEG and JPEG-XR using 
rate-distortion curves shown in Fig. 12. Bits per pixel versus PSNR graphs are shown for eight 
standard test images. Graphs are plotted by keeping the PSNR achieved using JPEG and 
JPEG-XR same as that achieved by the proposed algorithm. Thus, the algorithm having lower 
bpp value at the same PSNR can be considered to have better compression performance. As 
seen from Fig. 12, performance of the proposed scheme is better than JPEG for all the images 
at lower bitrates (i.e. lower bpp values). For the Woman-baby image, performance of the 
proposed scheme is better than JPEG at all the bitrates. The proposed scheme performs only 
marginally better than JPEG-XR at lower bit rates for images such as Baboon and 
Jupiter-moon. Performance of JPEG-XR is marginally better than the proposed scheme for 
images such as Woman-baby, Cornfield and Yacht. In general, it can be said that performance 
of JPEG-XR is comparable to the proposed scheme at lower bit rates. 

It is well-known that JPEG2000 achieves approximately 50% more CR than JPEG [53] 
while being 3 to 5 times more complex [54, 55]. Therefore, it is expected that the proposed 
scheme may not out-perform JPEG2000. Furthermore, JPEG2000 is a wavelet based 
compression scheme unlike the proposed scheme and JPEG-XR, which uses a transform 
similar to DCT and a block-based coding structure. 
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(c) Woman-baby (d) Goldhill 
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(g) Cornfield (h) Peppers 
Fig. 12. Bits per pixel versus PSNR plots for standard test images 

 
Due to the use of variable non-uniform blocks, the proposed scheme requires more 

computations than JPEG. The histogram formation step in the proposed algorithm is the most 
computationally intensive step. An image plane of size P×Q is first divided into 8×8 
non-overlapping blocks and then a histogram is formed using thresholds Thmn and Thvar. In the 
worst case scenario, if none of the histogram rows get merged with another; formation of 
histogram itself may require 






 +

×
×





 × 1

3232
QPQP comparisons. However, this scenario is not 

expected to occur as we are using image dependent thresholds Thmn and Thvar. After 
experimentations, it has been observed that the number of histogram rows varies between 2 
and 1167 for the standard test images and synthetic images used for benchmarking. 
Considering the number of histogram rows as 1167, the proposed algorithm requires 
approximately 1.5 times more computations as compared to JPEG.  

4.2 Comparison with contemporary techniques 

Proposed scheme is also compared with other contemporary techniques such as those 
proposed in [48-50] respectively, as shown in Table 4. [49] has achieved compression using 
machine learning techniques. Image is compressed using selected colors during encoding and 
missing colors are predicted during decoding. Better compression quality is achieved by 
minimizing the prediction error during decoding. Data-hiding and compression tasks are 
incorporated seamlessly by [48]. Blocks are embedded with secret data and based on the 
current bit being embedded, the block is encoded using either SMVQ or image inpainting. [50] 
incorporates HVS based models for thresholding and quantization of coefficients in a wavelet 
based compression scheme. 

For fair comparison of results, PSNR of the proposed scheme is kept equal to the highest 
PSNR achieved by one of the above-mentioned schemes. However, in case of Baboon image, 
PSNR of 25.2 dB cannot be achieved using the proposed method. Hence, minimum PSNR 
achievable for Baboon i.e. 29.05 dB, is used. Similarly for images; Peppers, Airplane, Tiffany 
and Sailboat, minimum PSNR achievable by the proposed scheme is used. As seen from Table 
4, our method performs better than almost all the techniques proposed in [48-50]. Note that the 
bpp values quoted in [50] are converted to CR using the relation in (26). For comparison with 
results in [50], two images, namely, Parrots and Statue, from the LIVE database [56] are used. 
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Table 4. Comparison with other proposed compression schemes 

Image 
Name 

Proposed Scheme Zhang et al.’s scheme Qin et al.’s scheme Sreelekha et al.’s scheme 
PLC-1 PLC-2 

CR PSNR (dB) CR PSNR (dB) CR PSNR (dB) CR PSNR (dB) CR PSNR (dB) 
Lena 105.8 33.0 23.7 33.0 20.66 29.85 - - - - 

Peppers 137.2 31.37 22.6 31.0 21.23 30.35 - - - - 
Baboon 136.9 29.05 11.4 25.2 - - - - - - 
Airplane 174.7 31.98 - - 21.37 29.31 - - - - 
Tiffany 157.94 32.5 - - 21.74 30.54 - - - - 
Sailboat 141.8 30.76 - - 20.12 28.42 - - - - 
Monarch 63.81 33.86 - - - - 40 33.23 40 33.86 
Parrots 77.19 36.51     57.14 33.75 57.14 36.51 
Statue 89.62 33.67     36.36 32.80 36.36 33.66 

5. Conclusion 
In this paper, images are compressed using a linear and perceptually uniform CIE La*b* color 
space in the JPEG image compression framework instead of the conventional YCbCr color 
space. A linear CSF suitable for the linear and perceptually uniform CIE La*b* color space is 
proposed. Image dependent variable size sub-blocks generated using the proposed novel 
histogram based merging technique are also used instead of the conventional 8×8 image 
sub-blocks in JPEG. In other words, images are compressed in the proposed scheme using the 
adaptively separated non-uniform blocks in the CIE La*b* color space using the JPEG image 
compression framework but our own quantization matrices generated using the proposed 
linear CSF function.  

The proposed scheme achieves, on an average, 45.01% more CR than JPEG for the same 
reconstructed image quality in terms of PSNR. It outperforms JPEG in terms of reconstructed 
image quality at lower bitrates. The proposed scheme also yields reconstructed image quality 
better than JPEG at all the bitrates for simple, low variance images.  The proposed scheme 
achieves on an average, 3.63% better CR than JPEG-XR. Performance of JPEG-XR is 
comparable to the proposed scheme at lower bit rates only. It is also demonstrated that the use 
of linear CSF for the perceptually uniform and linear CIE La*b* color space yields on an 
average 8% more compression than the non-linear CSF used with YCbCr color space. 
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