• Title/Summary/Keyword: Compression Tests

Search Result 1,548, Processing Time 0.03 seconds

Temperature Dependence of Dynamic Behavior of Commercially Pure Titanium by the Compression Test (CP-Ti의 동적거동에 미치는 온도의 영향)

  • Lee, Su-Min;Seo, Song-Won;Park, Kyoung-Joon;Min, Oak-Key
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1152-1158
    • /
    • 2003
  • The mechanical behavior of a commercially pure titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000$^{\circ}C$ with interval of 200$^{\circ}C$ and a strain-rate range of 1900 ∼ 2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystalization temperature. The Modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystalization temperature.

Plastic Deformation Behavior Of Al-Mg-Si Alloy At The Elevated Temperature (Al-Mg-Si합금의 고온 소성 변형 거동)

  • 권용남;이영선;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.172-175
    • /
    • 2003
  • Thermomechanical behavior of Al-Mg-Si alloys have been studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests have been carried out to get the basic information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys has been carried out and analyzed by the comparison with the compression tests. Microstructural features after forging have been discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we have found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains have been found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

  • PDF

Analyses of the Decrease Phenomenon of Fracture Resistance Curve Under Tension-Compression Loading (인장-압축하중 하의 파괴저항곡선의 감소현상 해석)

  • Yun, Byeong-Gon;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.378-385
    • /
    • 2000
  • Fracture resistance (J-R) curves, which are used for elastic-plastic fracture mechanics analyses, decreased under tension-compression loading condition. This phenomenon was proved by several former researches, but the causes have not been clear yet. The objective of this paper is to investigate the cause of this phenomenon. On the basis of fracture resistance curve test results, strain hardening hypothesis, stress redistribution hypothesis and crack opening hypothesis were built. In this study, hardness tests, Automated Ball Indentation(ABI) tests, theoretical stress field analyses, and crack opening analyses were performed to prove the hypotheses. From this study, strain-hardening of material, generation of tensile residual stress at crack tip, and crack opening effects are proved as the causes of the decrease hypothesis.

The Variation of Sedimentary Rock Strength due to Weathering (풍화에 따른 퇴적암의 강도 변화)

  • 배우석;이봉직;오세욱;이종규
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 2003
  • The failure of rock slopes were influenced by weathering, which causes change in the shear strength. The weathering is also directly related to slaking and swelling characteristics. In the paper, the core of diameter loom was obtained by digging on rock slope of Kong-ju in Korea and then EDX(Energy Dispersive X-ray spectrometer) analysis was carried out to verified element of chief rock-forming minerals. Uniaxial compression tests, slaking tests, and point load test are performed to study engineering characteristics of conglomerate and red shale. As a results of slaking test, slaking index of conglomerate indicate range of 85.11-99.58 and shale indicate 58.37-99.23. Therefore, it is recognized that the resistance of shale to weathering decreases in shallow depth and it greatly influences the strength of rock. The result of uniaxial compression test and Point load test show that the strength of sedimentary such as conglomerate and red shale has an influence on both weathering and saturation.

SOIL FAILURE AND ITS APPLICATION TO VIBRATING TILLAGE TOOL

  • Niyamapa, Tanya
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1053-1062
    • /
    • 1993
  • The effect of loading speed on soil failure was studied by using a high speed triaxial compression test. Tests were conducted at 0.35-6.2m/s loading speed to compress soil specimens of sandy loam at different moisture contents. The axial stress at fracture increased with increase in loading speed up to certain critical speeds, however they decreased as the speed up to certain critical speeds, however they decreased as the speed increased further. Experiments were also conducted in the field of sandy loam soil with the vibrating tillage tool. Tests were done at 0.33-0.85m/s tractor speed oscillating frequency 13.7hz and oscillating amplitude 59mm. The maximum oscillating velocity of tillage tool was 2.5m/s. It was observed that for the oscillating operation, initially draft slightly increased with increase in forward speed and then it decreased .For the non-oscillating operation, draft increased continuously with increase in forward speed. Approach of studying soil failure in the laboratory test can be related to the field experiments.

  • PDF

Evaluation of Mechanical Properties for Magnesium Sheet Forming by Tension and Compression Tests (마그네슘 판재성형을 위한 인장 및 압축실험을 통한 기계적 물성 평가)

  • Oh, S. W.;Choo, D. K.;Lee, J. H.;Kang, C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.635-641
    • /
    • 2005
  • The crystal structure of magnesium was hexagonal close-packed (HCP), so its formability was poor at room temperature. But formability was improved in high temperature with increasing of the slip planes. Purpose of this paper was to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature was increased, yield·ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) were decreased. But strain rate sensitivity (m) was increased. As strain-rate increased, yield·ultimate strength, K-value, and work hardening exponent (n) were increased. Also, microstructures of grains fined away at high strain-rate. These results would be used in simulations and manufacturing factor fer warm and hot forming process.

Behavior of Geosynthetic-Reinforced Clay (복합보강재를 이용한 보강점성토의 거동)

  • ;Fumio Tatsuoka
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.73-78
    • /
    • 2000
  • The reinforced soil has been widely used for constructing retaining walls and embankment with steep slope. However, the benefits of soil reinforcing are often-restricted by a lack of good quality backfill material. In this study, plane strain compression tests were carried out to study the effects of preloading on the behavior of geosynthetic-reinforced saturated clay. For the unreinforced and reinforced soil, drained and undrained shearing tests were peformed after anisotropic consolidation in a constant strain rate. A preoading test was carried out by preloading, creep, unloading, aging and undrained shearing after anisotropic consolidation(K=0.3, σ'₃=50 kPa). It was observed that a reinforced clay, Kanto loam, can have a great initial secant modulus in undraind condition by well compaction and over consolidation. The results shown that the increasing of drained strength should be used to apply a large preloading in the case of reinforced clay.

  • PDF

High Temperature Deformation Behavior of Fe-base High Strength Alloys (고강도 Fe계 합금의 고온 변형 특성)

  • Kwon, Woon-Hyun;Choi, Il-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.

A study of development of automobile's stabilizer using composite (복합재를 이용한 자동차 스테빌라이져 개발 관한 연구)

  • 김영수;김인관;김대식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.608-611
    • /
    • 2000
  • This study is for stabilizer, a parts of automotive suspension system, that would be changed to Plastic Material. The part is designed and analyze by PRO-E. The position of Weld Line is founded by the C-mold, computer software with FEM. Then a Mold is designed by consideration with locating Weld Line. Mechanical property tests, such as tensile test, compression test, ball pull-out test, fatigue test and durability test are done the part by SAE test spec. Most of all the result of the tests show over requirement result without the compression test.

  • PDF

The study for performance of isolators supported floating slab track (플로팅 슬래브궤도용 방진재의 성능에 관한 연구)

  • Kim, Jin-Ho;Cha, Hyo-Jung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.569-574
    • /
    • 2007
  • The paper presents an application of the model to a practical problem of train-induced vibrations. The aim of this study is to vertify for performance of isolators which was developed in KRRI supported floating slab track. Laboratory tests on developed isolations show that the energy dissipation, under cyclic loading of constant amplitude, can be suitably represented by a combination of a viscous and a hysteretic damping. Also, other tests for structural performance are carried out, such as elastic material test, compression test and so on. The specimen, $400{\times}400{\times}300mm$, is placed between two stiff steel plates designed to uniformly distribute the compression stress on the surface.

  • PDF