• Title/Summary/Keyword: Compression Tests

Search Result 1,548, Processing Time 0.025 seconds

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

The effect of peak cladding temperature occurring during interim-dry storage on transport-induced cladding embrittlement

  • Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1486-1494
    • /
    • 2020
  • To evaluate transport-induced cladding embrittlement after interim-dry storage, ring compression tests were carried out at room temperature(RT) and 135 ℃. The ring compression test specimens were prepared by simulating the interim-dry storage conditions that include four peak cladding temperatures of 250, 300, 350 and 400 ℃, two tensile hoop stresses of 80 and 100 MPa, two hydrogen contents of 250 and 500 wt.ppm-H and a cooling rate of 0.3 ℃/min. Radial hydride fractions of the ring specimens vary depending on those interim-dry storage conditions. The RT compression tests generated lower offset strains than the 135 ℃ ones. In addition, the RT and 135 ℃ compression tests indicate that a higher peak cladding temperature, a higher tensile hoop stress and the lower hydrogen content generated a lower offset strain. Based on the embrittlement criterion of 2.0% offset strain, an allowable peak temperature during the interim-dry storage may be proposed to be less than 350 ℃ under the tensile hoop stress of 80 MPa at the terminal cool-down temperature of 135 ℃.

Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine (와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선)

  • Lee, Chang-Kyu;Huh, Yun-Kun;Seo, Sin-Won
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

The Compressive Strength and Durability Characteristics of Lime-Cement-Soil Mixtures (석회-시멘트 혼합토의 압축강도 및 내구 특성)

  • Oh, Sang-Eun;Yeon, Kyu-Seok;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • In this study, the compressive strength characteristics of lime-cement-soil mixtures, composed of lime, soil, and a small amount of cement, were investigated by performing the unconfined compression tests, the freezing and thawing tests, the wetting and drying tests and the permeability tests. The specimens were made by mixing soils with cement and lime. The cement contents were 0, 6, 8 and 10 %, and the lime contents were 2, 4, 5, 10, 15 and 20 % in weight. Each specimen was cured at constant temperature in a humidity room for 3, 7 and 28 days. The compressive strength characteristics of the lime-cement-soil mixtures were then investigated using the unconfined compression tests, freezing and thawing tests and the wetting and drying tests. Based on the test results, a discussion was made on the applicability of the lime-cement-soil mixtures as a construction material.

Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis (생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

Axial compression behavior of double-skinned composite tubular columns under pure compression on concrete cores

  • Lee, Jeonghwa;Byun, Namju;Kang, Young Jong;Won, Deok Hee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A double-skinned composite tubular (DSCT) column, which is an internally confined concrete-filled tubular column with a hollow section, has been developed for efficient use of materials that reduce self-weight and enhance seismic performance. It exhibits excellent material behavior with ductility owing to the confinement induced by outer and inner steel tubes. This study conducted axial compression tests considering the effects of steel tube thickness and hollow diameter ratios of DSCT columns on the material behavior of confined concrete under pure axial compression on concrete cores. From the axial compression tests, various combinations of outer and inner tube thicknesses and two different hollow section ratios were considered. Additionally, confined concrete material behavior, axial strength, failure modes, and ductility of DSCT columns were evaluated. Based on this study, it was concluded that the tests show a good correlation with peak strength and shapes of nonlinear stress-strain curves presented in literature; however, the thinner outer and inner steel tubes may reduce the ductility of DSCT columns when using thinner outer and inner tubes and higher confined stress levels. Finally, the minimum thickness requirements of the steel tubes for DSCT columns were discussed in terms of strength and ductility of test specimens.

Investigation of High Temperature Deformation Behavior in Compression and Torsion of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 비틀림 및 압축변형에 따른 고온변형거동 고찰)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Hong, J.K.;Park, N.K.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.435-438
    • /
    • 2008
  • High temperature deformation of Ti-6Al-4V alloy with a lamellar colony microstructure was investigated by hot compression and torsion tests. The torsion and compression tests were carried out under a wide range of temperatures and strain rates with true strain up to 2 and 0.7, respectively. The processing maps were generated on the basis of compression and torsion test data and using the principles of dynamic materials modeling (DMM). The shapes of the strain-stress curves in alpha-beta region and processing maps obtained on the two different tests have been compared with a view to evaluate the effect of the microstructure evolution on the flow softening behavior of Ti-6Al-4V alloy with a lamellar colony microstructure.

  • PDF

A micromechanical model for ceramic powders (세라믹 분말의 변형거동 해석을 위한 미소역학모델)

  • Ha, Sang-Yul;Park, Tae-Uk;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.668-673
    • /
    • 2008
  • In this paper, we developed a physically-based micromechanical model for inelastic deformation of ceramic powders. The aggregate response of ceramic particles was modeled using the two-surface yield function which considered the shear-induced dilatancy caused by friction, rolling resistance and cohesion between powder particles and consolidation caused by plastic deformation of powder themselves under high compression. The constitutive equations were implemented into the user-subroutine VUMAT of finite element program ABAQUS/Explicit. The material parameters in the constitutive model were identified by calibrating the model to reproduce data from triaxial compression tests and simple compression tests. The density distribution obtained by using the proposed model was in good quantitative agreement with the experimental results of the triaxial compression and cold isostaic compression as well.

  • PDF

Fixation of Compression Set of Heat-Compressed Wood by Steaming (수증기 처리에 의한 열압밀화목재의 압축 고정)

  • 이원희;한규성
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.85-89
    • /
    • 2000
  • This study investigated the effect of steaming on fixation of compression set and the effect of these treatments on mechanical properties of heat-compressed wood specimens. To determine the effect of steaming after compression set, wood specimens were compressed for 100min at 180f and then steamed for 20-100min at $120^{\circ}C$. Swelling tests were used to evaluate recovery of compression set. Bending, compression, and Brinell hardness tests were carried out for evaluating mechanical properties. Compressed wood steamed for 100 min at $120^{\circ}C$ showed 1.9% recovery of set, increases in bending and compressive properties, and no hardness change. We concluded that almost complete fixation of compression set in wood can be achieved by steaming compressed wood.

  • PDF

A Study on the Shape Memory Characteristic Behaviors of Ti-42.5at.%Ni-2.0at.%Cu Alloys in Tension and Compression Condition (Ti-42.5at.%Ni-2.0at.%Cu합금의 인장 및 압축에 따른 형상기억특성에 관한 연구)

  • Woo, Heung-Sik;Cho, Jae-Whan;Park, Yong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.1-5
    • /
    • 2009
  • NiTiCu alloys can produce a large force per unit volume and operate with a simple mechanism. For this reasons, it has been widely studied for application as a micro actuator. So in this study, one-way and two way shape memory effects of Ti-42.5at%Ni-2.0at%Cu alloys are studied. In the case of one-way shape memory effects, shape memory recoverable stress and strain of this alloys were measured by means of tension and compression tests under constant temperature. The strains by tension and compression stress were perfectly recovered by heating at any testing conditions also shape memory recoverable stress increased to 116 MPa in tension tests and to 260 MPa in compression tests. In the case of two-way shape memory effects, transformation temperatures from thermal cycling under constant uniaxial applied tension and compression loads linearly increased by increasing external loads and their maximum recoverable strain is 3.8% at 100MPa tensile condition and 2.2% at 125 MPa compression condition.