• Title/Summary/Keyword: Compression Ignition

Search Result 324, Processing Time 0.029 seconds

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Study of Performance and Knock Characteristics with Compression Ratio Change in HCNG Engine (HCNG 엔진에서 압축비 변경에 따른 성능 및 노킹 특성 연구)

  • Lim, Gi Hun;Lee, Sung Won;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.387-394
    • /
    • 2013
  • Hydrogen-compressed natural gas (HCNG) blend has attracted attention as a fuel that can reduce $CO_2$ emissions because it has low carbon content and burns efficiently. An increase in the compression ratio of HCNG engines was considered as one of the methods to improve their efficiency and reduce $CO_2$ emissions. However, a high combustion rate and flame temperature cause abnormal combustion such as pre-ignition or knocks, which in turn can cause damage to the engine components and decrease the engine power. In this study, the performance and knock characteristics with a change in the compression ratio of an HCNG engine were analyzed. The combustion characteristics of HCNG fuel were evaluated as a function of the excess air ratio using a conventional CNG engine. The effects of the compression ratio on the engine performance were evaluated through the same experimental procedures.

The Effects of EGR and Hydrogen Enriched Gas on Diesel HCCI Engine (디젤 예혼합 압축착화 엔진에서 EGR 및 수소농후가스의 영향)

  • Park, Cheol-Woong;Cho, Jun-Ho;Oh, Seung-Mook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In recent years, there has been an interest in early-injection diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to standard diesel engine. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency in homogeneous charge compression ignition engines. While earlier studies have shown that a reduction in NOx emissions from HCCI engine is possible, there are some significant problems including the control of ignition timing and combustion rate. In order to investigate the effect of EGR and hydrogen enriched gas on combustion characteristics and emissions, an experiments with single cylinder CRDi engine were carried out concerning the formation of various premixed charge, which can achieved by early injection, EGR and hydrogen enriched gas. EGR was not effective to further reduce NOx and PM emissions. It was found that NOx emissions were decreased with an introduction of hydrogen enriched gas and an adequate diesel fuel amount.

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Oxygenated Blending Fuel (압축착화 엔진에서 함산소 혼합연료의 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Chon, Moo-Soo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.61-66
    • /
    • 2009
  • An experimental investigation was conducted to analyze the effects of biodiesel-ethanol and biodiesel-diesel blended fuels on the characteristics of combustion and exhaust emissions, and size distributions of particulate matter in a single cylinder diesel engine. The three types of test fuel were biodiesel and two blended fuels which were added ethanol and diesel by 20 % volume based fraction into biodiesel, respectively. In this study, the injection rate, combustion pressure, exhaust emissions and size distributions of particulate matter were measured under various injection timings and injection pressures. The experimental results show that biodiesel-ethanol blended fuel has lengthened ignition delay and low combustion pressure in comparison with those of biodiesel and biodiesel-diesel blended fuel even if all fuels indicated similar trends of injection rate under equal injection pressures. In addition, the ethanol blended fuel significantly reduced nitrogen oxidies (NOx) and soot emissions. And then the size distribution of particulate matters shows that blended fuels restrain the formation of particles which were beyond the range of 150nm comparison with biodiesel fuel.

An Investigation about Combustion and Emission Characteristics for Pilot Injection Timing on Partially Premixed Charge Combustion Ignition Engine Fueled with DME (파일럿 분사시기에 따른 DME 부분 예혼합 압축착화 엔진의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Pyo, Youngduck;Lee, Youngjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.43-49
    • /
    • 2013
  • This work investigated the effects of engine speed and injection timing on combustion and emissions characteristics in a partially premixed charge compression ignition (pPCCI) engine fueled with DME. pPCCI engine especially has potential to achieve more homogeneous mixture in the cylinder, which results in lower NOx and smoke emission. In this study single cylinder engine was equipped with common rail and injection pressure is 700 bar. Total injected fuel mass is 64.5 $mm^3$ per cycle. The amount of pilot injection of the entire injection 12.5% is tested. Results show that NOx emission is decreased while IMEP is increased as the retard of injection timing. Besides, NOx emissions are slightly rised as well as IMEP is increased with the increase of engine speed.

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Biodiesel according to EGR Ratio (바이오디젤을 적용한 압축착화 엔진에서 EGR율에 따른 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.98-104
    • /
    • 2010
  • An experimental investigation was conducted to analyze the effects of EGR ratio on the combustion, exhaust emissions characteristics and size distributions of particulate matter in a single cylinder diesel engine with common-rail injection system fueled with biodiesel derived from soybean. In order to analyze the combustion, exhaust emissions and measurement of size distributions of particulate matter were carried out under various EGR ratio which was varied from 20~60% and the results were compared to those of results without EGR. The experimental results show that ignition delay was extended and maximum value of rate of heat release (ROHR) was decreased according to increasing of EGR ratio. In addition, oxidies of nitrogen ($NO_x$) emissions were reduced but soot emissions were increased under increasing of EGR ratio. However, under higher EGR ratio region, soot was slightly decreased. And then the particulate size distribution shows that high exhaust gas temperature restrain the formation of soluble organic fraction (SOF) which were beyond the accumulation mode (100~300nm) and lead to increase of nuclei mode particles.

An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure (분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구)

  • Jeong, Y.H.;Yang, J.W.;Oh, C.H.;Lim, O.T.
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.

A Study of Behavior Characteristics of Biodiesel Fuel Spray (바이오디젤 연료 분무의 거동특성 연구)

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.156-163
    • /
    • 2014
  • Diesel engine is most suitable one for biodiesel fuel because the compression-ignition diesel engine has desirable fuel consumption due to higher thermal efficiency and in addition, the improvement of the fuel consumption also leads to a reduction of $CO_2$ emission and then it does not need to have spark-ignition system, which means that there is less charge on the technic and complexity. In this study, the spray behavior characteristics of the vegetable palm oil were analyzed by using a common-rail injection system of commercial diesel engine and the results were compared with those obtained for the diesel fuel. The injection pressures and blend ratios of palm oil and diesel(BD3, BD5, BD20, BD30, BD50, and BD100) were the main parameters. The experiments were conducted for different injection pressures: 500bar, 1000bar, 1500bar, and 1600bar by setting injection duration to $500{\mu}s$. Consequently, it was found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of palm oil and diesel at a fixed injection pressure. In particular, all experiments showed the spray angle about $12^{\circ}{\sim}13^{\circ}$.

Methods of Knock Signal Analysis in a S.I. Engine (4 기통 스파크 점화 기관의 노킹 신호 해석 방법)

  • Kim, K.W.;Chun, K.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.12-21
    • /
    • 1993
  • In recent years, high efficiency, high performance, and low pollutant emmision engines have been developed. Knock phenomenon has drawn interests because it became an hinderance to engine power and efficiency increase through higher compression ratio. Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and accompanied a high pitched metallic noise. And this phenomenon is characterized by knock occurrence percentage, knock occurrence angle and knock intensity. A four cylinder spark ignition engine is used in our experiment, and its combustion chamber pressure is measured at various engine speeds, ignition timing. The data are analyzed by numerous methods in order to select the optimum methods and to achieve better understanding of knock characteristics. Methods using band-pass filter, third derivative and step method are shown to be the most suitable, while methods using frequency analysis are shown to be unsuitable. Because step method only uses signals above threshold value during knocking condition, pressure signal analyses with this method show good signal-to-noise ratio.

  • PDF

Effect of Cooled-EGR on the Characteristics of Performance and Exhaust in a HCCI Diesel Engine (균일 예혼합 압축 착화 디젤 엔진의 성능 및 배출물 특성에 미치는 Cooled-EGR 효과)

  • Lee, Chang-Sik;Yoon, Young-Hoon;Kim, Myung-Yoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.35-41
    • /
    • 2005
  • The effects of cooled-ECR on the characteristics of combustion and exhaust emissions were investigated in a single cylinder HCCI diesel engine The premixed charge (gasoline or diesel) was obtained with premixing chamber and high-pressure (5.5MPa) injection system. Exhaust pressure control and cooled ECR system were used in order to reduce pressure fluctuation and to mix the exhaust gas well with the fresh intake air. The experimental results show that NOx emissions from conventional diesel engine are steeply decreased by HCCI diesel combustion with cooled-EGR in both case of gasoline and diesel premixing. But soot emissions are rapidly increased with the increase of ECR rate. The recycled exhaust gas increased the ignition delay of mixture and decreased maximum combustion pressure. HC and CO emissions of HCCI combustion are increased with ECR rate.