• Title/Summary/Keyword: Compression Force

Search Result 640, Processing Time 0.025 seconds

Analysis of the Dynamic Behavior and Lubrication Characteristics of a Small Reciprocating Compressor (소형 왕복동 압축기의 동적 거동 및 윤활특성 해석)

  • Kim, Tae-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1138-1145
    • /
    • 2003
  • In this paper, a study on the dynamic behavior and lubrication characteristics of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and oil films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and Gumbel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft. The results explored the effects of design parameters on the stability and lubrication characteristics of the compression mechanism.

A Study on Mechanical Properties of Acrylonitrile Butadiene Rubber Composites

  • Jung, Eugene;Pyo, Kyeong-Deok;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.280-286
    • /
    • 2017
  • The mechanical and dynamic properties according to the content of filler, plasticizer, and crosslinking agent of rubber composites for Lipseal were measured in this study. The mechanical properties of the composite including the silane coupling agent and silica were found to be superior to those of the composite containing carbon black. It was found that the rebound resilience characteristics were influenced by the crosslink density of sulfur rather than the filler or plasticizer. In the case of recovery, it was confirmed that the elastic restoring force improved in the compression deformation condition and recovery increased as the crosslinking density increased. The rubber composite for Lipseal of this study is expected to improve the manufacturing technology of the rubber composite which can implement the optimum function for recognizing the performance such as oil resistance, durability and compression set.

An Experimental and Analytical Study on Shear Transfer for Safety Evaluation of Concrete Structure (콘크리트 구조물의 전단 안정성 평가를 위한 전단전달 실험 및 해석)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.42-50
    • /
    • 2008
  • This study, push-off tests for the initially uncracked specimens were conducted to investigate shear transfer mechanism in reinforce concrete elements. Experimental programs for shear transfer were undertaken to investigate the effect of the concrete compressive strength, the presence of steel stirrups as shear reinforcement and the amount of steel stirrups. As the shear plane is loaded, several cracks form in a direction inclined to the shear plane, creating compression struts in the concrete. For this stage, shear is being transferred through a truss-like action produced by the combination of the compressive force in the concrete struts and the tensile force that the steel reinforcement crossing the shear plane develops. In the normal strength concrete specimens with steel stirrups, ultimate failure occurred when the compression struts crushed in concrete. In the high strength concrete specimens, on the other hand, ultimate failure occurred when the steel stirrups developed their yield strength.

Buckling Analysis of Composite Cylindrical Panels under Combined Loading of Constant Lateral Pressure and Incremental Compression (일정 횡하중과 증분 압축하중을 동시에 받는 복합적층 판넬의 좌굴 해석)

  • 최상민;김진호;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.1-4
    • /
    • 2000
  • This paper addresses a modified arc-length method for the nonlinear finite element analysis of a structure which is loaded in incremental and fixed forces, simultaneously. The main idea of the method is to separate the displacement term by the constant force from that by the incremental force. As the illustrative examples of the applicability of the present algorithm, a parametric study is performed on the nonlinear buckling behavior of composite cylindrical panels under the combined load of the incremented compression and the constant lateral pressure.

  • PDF

A Study on the Measurement of Back Power and the Evaluation of Compression Force at the L_5/S_1$ (요배근력 촉정 및 L_5/S_1$ 요추부하 평가에 관한 연구)

  • Yang, S.H.;Kim, D.S.;Park, P.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.161-165
    • /
    • 1997
  • Recently, industrial accidents have been getting great damage to an enterprise management directly and indirectly, the industrial injuries of conventional type are decreasing : on the other hand, musculoskeletal injuries are trending to a rapid increase. This shows that most of carrying works have been performing in almost all production process and convey objects, machine equipment and work method. Then, they are made by unfitted design which doesn't consider physical condition of workers, so it causes them to bring about forceful motion. In this paper, it was used NIOSH standard the data of spot. The ergonomic design of machine equipment and the evaluation of biomechanical compression force at theL_5/S_1$and back power, intend to provide the basis which can be applied, compared, and analyzed between before process improvement and after.

  • PDF

Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor (가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

Finite Element Analysis of the Flow in SMC Compression Molding and Its Applications (SMC 압축성형공정의 모델링 및 유한요소법을 이용한 열유동 해석)

  • 이응식;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3084-3090
    • /
    • 1994
  • A new flow model is developed for the analysis of compression molding of sheet molding compounds(SMC) and penalty finite element formulation is presented to predict flow front progressions more accurately. In this model SMC is assumed nonisothermal fluid, which has different viscosities in extension and in shear. The flow is allowed to slip at the mold and is resisted by friction force which is proportional to the relative velocity at mold surface. For the verification of the model, the press force and flow patterns are compared with those of experiments and available results by other works in this field. It is also demonstrated, using the computational procedure described and the proposed model, that optimal initial charge shapes for the filling can be effectively computed.

Application of Compression dispersion Anchor Using Auto back Equipment (자동 인장 장치에 의한 압축 분산형 앵커의 적용성)

  • Lee Song;Park Sang Kook;Jeong Young Eun;Lee Sung Won
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.994-1000
    • /
    • 2004
  • It is growing the application of the removal ground anchor with tension force for earth retaining constructions in the downtown. Nowadays, we can find the compression dispersion anchor on many site. But, it is occur some probelems in behabior of anchors because of impossible to tense p.c strand uniformly with existing equipment due to different length of p.c strand. So we tried to tense each p.c strand uniformly with auto back equipment in-situ test. This study compared and analyzed in-situ test results of an existing equipment with those of auto back equipment by appling elastic theory. As a result of the test, It has been proved that differences of tension force in the existing equipment increases with increasing the number of p.c strands. This can cause the ultimate failure of the concentrated p.c strand and the shear failure of ground. So it has been proved that auto back equipment is necessary.

  • PDF

A Study on Development of Setup Model for Thickness Control in Tandem Cold Rolling Mill (연속냉간압연의 두께제어 모델 개발에 관한 연구)

  • 손준식;김일수;권욱현;최승갑;박철재;이덕만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.96-103
    • /
    • 2001
  • The quality requirements for thickness accuracy in cold rolling continue to become more stringent, particularly in response to exacting design specification from automotive customers. One of the major impacts from the tighter tolerance level is more unusable product on the head end and tail end of tandem mill coils when the mill is in transition to or from steady state rolling condition. A strip thickness control system for a tandem cold steel rolling mills is composed with blocked non-interacting controller and controllers for strip thickness and tension control of each rolling stands. An intelligent mathematical model included an elastic deformation of strip has been developed and applied to the field in order to predict the rolling force. The simulated results showed that the effect of elastic recovery should be included the model, even if the effect of elastic compression was not important.

  • PDF

Mechanical Properties of Rice Plants Under the Transverse Loading -Creep and Recovery Behavior- (측방향하중(側方向荷重)에 의한 벼줄기의 역학적특성(力學的特性)에 관한 연구(硏究)(II) -크리이프 및 회복 거동-)

  • Huh, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.233-241
    • /
    • 1996
  • The mechanical properties of biological materials depend on numerous factors. The majority of these relationships are still unknown today, especially with regard to their quantitative characteristics. The reason is that biological materials constitute biomechanical systems of very complex construction, whose behavior cannot be characterized by simple physical constants, as for example can that of engineering materials. The objectives of this investigation were to determine the compression creep and recovery properties of rice stalks at various levels of applied load The compression creep and recovery behavior of the rice stalk could be predicted precisely by rheological model which approached closely to the measured values. But the coefficients of the Burgers recovery model were different from those of the creep model. The Steady state creep behavior occurred at the higher level of force and the logarithmic creep behavior occurred at the lower level of force. The mechanical model being expected the creep behavior in relation with the level of applied load, which was well explained that the rice stalk might be visco-elastic material.

  • PDF