• Title/Summary/Keyword: Compression Behavior

Search Result 1,543, Processing Time 0.022 seconds

Consolidation Behavior of Soft Ground by Prefabricated Vertical Drains (연직드레인 공법에 의한 연약지반의 압밀거동)

  • 이달원;강예묵
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.376-381
    • /
    • 1998
  • The large scaled field test by prefabricated vertical drains was performed to evaluate the superiority of vertical discharge capacity for drain materials through compare and analyze the time-settlement behavior with drain spacing and the compression index and consolidation coefficient obtained by laboratory experiments and field monitoring system 1. The relation of measurement settlement( $S_{m}$) versus design settlement( $S_{t}$) and measurement consolidation ratio( $U_{m}$) versus design consolidation ratio( $U_{t}$) were shown $S_{m}$=(1.0~l.1) $S_{t}$, $U_{m}$=(1.13~l.17) $U_{t}$, at 1.0m drain spacing and $S_{m}$=(0.7~0.8) $S_{t}$, $U_{m}$=(0.92~0.99) $U_{t}$ at 1.5m drain spacing, respectively. 2. The relation of field compression index( $C_{cfield}$) and virgin compression index( $V_{cclab}$) was shown $C_{cfield}$=(1.0~1.2) $V_{cclab}$, But it was nearly same value when considered the error with determination method of virgin compression index and prediction method of total settlement. 3. field consolidation coefficient was larger than laboratory consolidation coefficient, and the consolidation coefficient ratio( $C_{h}$/ $C_{v}$) were $C_{h}$=(2.4 ~ 3.0) $C_{v}$. $C_{h}$=(3.5 ~ 4.3) $C_{v}$ at 1.0m and 1.5m drain spacing and increased with increasing of drain spacingngasing of drain spacingng spacingng

  • PDF

Experimental research on masonry mechanics and failure under biaxial compression

  • Xin, Ren;Yao, Jitao;Zhao, Yan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.161-169
    • /
    • 2017
  • This study aimed to develop a simple and effective method to facilitate the experimental research on mechanical properties of masonry under biaxial compressive stress. A series of tests on full-scale brick masonry panels under biaxial compression have been performed in limited principal stress ratios oriented at various angles to the bed joints. Failure modes of tested panels were observed and failure features were analyzed to reveal the mechanical behavior of masonry under biaxial compression. Based on the experimental data, the failure curve in terms of two orthotropic principal stresses has been presented and the failure criterion of brick masonry in the form of the tensor polynomial has been established, which indicate that the anisotropy for masonry is closely related to the difference of applied stress as well as the orientation of bed joints. Further, compared with previous failure curves and criteria for masonry, it can be found that the relative strength of mortar and block has a considerable effect on the degree of anisotropy for masonry. The test results demonstrate the validity of the proposed experimental method for the approximation of masonry failure under biaxial compressive stress and provide valuable information used to establish experimentally based methodologies for the improvement of masonry failure criteria.

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Study on the Wearing Conditions of Weight Training Compression Wear for Men in their 20s (웨이트 트레이닝 활동을 위한 20대 남성 컴프레션웨어 착의 실태)

  • Kim, Mira;Kim, Dong-Eun;Choi, Hei Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.5
    • /
    • pp.775-787
    • /
    • 2016
  • This study examined the wearing conditions of compression wear for weight training. Compression wear has recently received significant attention from the public and athletes as high-level functional sportswear. The survey was conducted on 373 men in their 20s for general information on purchase behavior, preferred brand, function, and preferred design. The majority of participants (n=181) were aware of the function of compression wear. The most selected reason for wearing compression wear was for its convenience during sports activities. Respondents had the greatest preference for designs with a round neckline, regular leggings type, upper arm-length sleeve, and thigh-length bottom. Respondents also wanted a stronger compression in the core muscle part (abdomen, back, and waist).

Localized Necking in a Round Tensile Bar for a HCP Material Considering Tension-compression Asymmetry in Plastic Flow (소성 비대칭성을 갖는 HCP 소재의 국부변형 및 네킹해석)

  • Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.285-290
    • /
    • 2012
  • In spite of progress in predicting ductile failure, the development of a macroscopic yield criterion to describe damage evolution in HCP (hexagonal close-packed) materials remains a challenge. HCP materials display strength differential effects (i.e., different behavior in tension versus compression) in their plastic response due to twinning. Cazacu and Stewart(2009) developed an analytical yield criterion for porous material containing randomly distributed spherical voids in an isotropic, incompressible matrix that shows tension-compression asymmetry. The goal of the calculations in this paper is to investigate the effect of the tension-compression asymmetry on necking induced by void nucleation, evolution and consolidation. In order to investigate the effect of the tension-compression asymmetry of the matrix on necking and fracture initiation, three isotropic materials A, B, and C were examined with different ratios of tension-compression asymmetry. The various types of material had BCC, FCC, and HCP crystal structures, respectively. The ratio between tension and compression in plastic flow significantly influences the fracture shape produced by damage propagation as well as affecting the localized neck.

Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression (3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석)

  • 이근식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF

Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression (고강도 콘크리트의 일축 및 이축 압축하의 파괴거동)

  • Lee, Sang-Kuen;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs (마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석)

  • Kang, Jeong-Eun;Yoo, Ji-Yoon;Choi, In-Kyu;YU, Jae Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

축변환 구성방정식을 이용한 암석 이방성 탄성계수 산정

  • 김영수;이재호;허노영;박영화;최정호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.729-736
    • /
    • 2000
  • For nonhomogeneous and anisotropic rocks such as schist, shale, etc, a method to determine the anisotropic elastic constants was proposed. Many authors have investigated in detail the behavior elastic constants of anisotropy rocks(Pinto 1970, Amadei 1983, 1992, Amadei & Savage 1989). They concluded that equations of elastic constants E$_1$, E$_2$ and G$_2$ can be derived from the measured strains in arbitrary three directions. And, modulus of elasticity varies according to the inclination of discontinuity in specimens. If we attach three strain gages in accordance with the directions of anisotropy on the rock specimen under uni-axial compression and diametral compression tests, anisotropy elastic constants can be determined by these equations. With this method, the degree of anisotropy will be easily evaluated by simple laboratory test. This paper presents the results of elastic constants due to the angle of bedding planes of anisotropic rock, such as shale, in uni-axial compression and diametral compression tests

  • PDF