• Title/Summary/Keyword: Compressible Volume

Search Result 163, Processing Time 0.024 seconds

A Deformation Model of a Bag-Finger Skirt and the Motion Response of an ACV in Waves

  • Lee, Gyeong-Joong;Rhee, Key-Pyo
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.29-46
    • /
    • 1994
  • In this paper, the effect of a skirt deformation on the responses of an Air Cushion Vehicle in waves is investigated. The air in the bag and plenum chamber is assumed to be compressible and to have a uniform pressure distribution in each volume. The free surface deformation is determined in the framework of a linear potential theory by replacing the cushion pressure with the pressure patch which is oscillating and translating uniformly. And the bag-finger skirt assumed to be deformed due to the pressure disturbance while its surface area remained constant. The restoring force and moment due to the deformation of bag-finger skirt from equilibrium shape is incorporated with the equations of heave and pitch motions. The numerical results of motion responses due to various ratios of the bag and cushion pressure or bag-to-finger depth ratios are shown.

  • PDF

An experimental study of Incompressible time based mass flow controller (비압축성 시간식 질량유량계의 특성에 관한 연구)

  • Chang, Young-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.55-58
    • /
    • 2008
  • The objective of this research is to design, manufacture and test a mass flow controller capable of measuring compressible as well as incompressible fluid flows based on a 'bucket and stop-watch' method. The basic principle behind such a system is the measurement of time, where the time taken to fill and empty a bucket of known volume is measured. This device should be able to handle fluid flows in the range of 0.1 ml/min to 10 ml/min within an accuracy of ${\pm}$1%. For the flow meter to be able to compete with established designs, it must be not only comparable in cost and robustness, but also very accurate and reliable as well.

  • PDF

A Computational Study of Aerodynamic Characteristics of Spinning Sphere (회전하는 구의 공력특성에 수치해석적 연구)

  • Deshpande, S.V.;Lee, Y.K.;Kim, H.D.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.223-226
    • /
    • 2006
  • Computational Study of a sphere subjected to free stream flow and simultaneously subjected to spinning motion is carried out. Three dimensional compressible Navier-Stokes equations are solved using fully implicit finite volume scheme. SST(Shear Stress Transport) $k-{\omega}$ turbulence model is used. Aerodynamic characteristics being affected are studied. Validation of the numerical process is done for the no spin condition. Variation of drag coefficient and shock wave strength with increase in spinning rate is reported. Changes in the wake region of the sphere with respect to spinning speed are also observed.

  • PDF

Aerodynamic Performance Analysis of a Shrouded Rotor Using an Unstructured Mesh Flow Solver

  • Lee H. D.;Kwon O. J.;Joo J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.263-265
    • /
    • 2003
  • The aerodynamic performance of a shrouded tail rotor in hover has been studied by using a compressible inviscid flow solver on unstructured meshes. The numerical method is based on a cell­centered finite-volume discretization and an implicit Gauss-Seidel time integration. The results show that the performance of an isolated rotor without shroud compares well with experiment. In the case of a shrouded rotor, correction of the collective pitch angle is made such that the overall performance matches with experiment to account for the uncertainties of the experimental model configuration. Details of the flow field compare well with the experiment confirming the validity of the present method.

  • PDF

Study of the Aerodynamic Characteristics of an Aerofoil in Accelerating Free Streams (가속 유동장에서 발생하는 익형의 공력특성에 관한 연구)

  • Kim, Tae-Ho;Kim, Heuy-Dong;Sohn, Myong-Hwan;Lee, Myeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2115-2120
    • /
    • 2003
  • Many flight bodies are essentially imposed in gradually accelerating and decelerating free streams during taking-off and landing processes. However, the wing aerodynamics occurring in such a stream have not yet been investigated in detail. The objective of the present study is to make clear the aerodynamic characteristics of an aerofoil placed in the accelerating and decelerating free stream conditions. A computational analysis is carried out to solve the unsteady, compressible, Navier-Stokes equations which are discretized using a fully implicit finite volume method. Computational results are employed to reveal the major characteristics of the aerodynamics over the gradually accelerating aerofoil wings.

  • PDF

Performance Evaluation and Numerical Calculation of Flows through a Vaned Diffuser for Centrifugal Compressor (원심압축기용 베인 디퓨저 내부유동의 수치해석 및 성능평가)

  • Choi, Yun-Ho;Kang, Shin-Hyoung;Lee, Jang-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1296-1309
    • /
    • 1999
  • A three dimensional compressible Navier-Stokes code is developed to analyze flowfields and performance of a vaned diffuser in a centrifugal compressor. It employs scalar implicit approximate factorization, finite volume formulation, second order upwind differencing and a two-equation $q-{\omega}$ turbulence model based on the integration to the wall. Pressure recovery and loss coefficients of a vaned diffuser are evaluated using a developed computer code. The simulated three dimensional flows show how through flow structure affects pressure recovery performance and loss coefficients of a vane for design and off-design inlet flow angles. Development of complex three dimensional flow over the inlet region and leading edge are very influential to the overall flow and performance.

MULTIDIMENSIONAL INTERPOLATIONS FOR THE HIGH ORDER SCHEMES IN ADAPTIVE GRIDS (적응 격자 고차 해상도 해법을 위한 다차원 내삽법)

  • Chang, S.M.;Morris, P.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.39-47
    • /
    • 2006
  • In this paper, the authors developed a multidimensional interpolation method inside a finite volume cell in the computation of high-order accurate numerical flux such as the fifth order WEND (weighted essentially non-oscillatory) scheme. This numerical method starts from a simple Taylor series expansion in a proper spatial order of accuracy, and the WEND filter is used for the reconstruction of sharp nonlinear waves like shocks in the compressible flow. Two kinds of interpolations are developed: one is for the cell-averaged values of conservative variables divided in one mother cell (Type 1), and the other is for the vertex values in the individual cells (Type 2). The result of the present study can be directly used to the cell refinement as well as the convective flux between finer and coarser cells in the Cartesian adaptive grid system (Type 1) and to the post-processing as well as the viscous flux in the Navier-Stokes equations on any types of structured and unstructured grids (Type 2).

Characteristic Analysis of Powder Forging Processes for Engine Pistons by Finite Element Analysis (유한요소 해석을 통한 피스톤 분말단조 공정의 특성 분석)

  • Jo, Jin-Rae;Ju, Yeong-Sin;Kim, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2042-2049
    • /
    • 2000
  • This paper is concerned with the comparison of forging characteristics between forward and backward processes, through the three-dimensional finite element simulation, for the aluminum powder forging of engine pistons. Starting from the theoretical formulation of velocity and temperature fields in the sintered preform during the process, we examine the comparative distributions of relative density, effective stress and temperature as well as the variations of total forging load and total volume reduction. Through the comparative results, we find out that the forward method provides better forging characteristics than the backward method.

Rotordynamic Analysis of Compressor Labyrinth Seals (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.849-855
    • /
    • 1998
  • An analysis of lateral hydrodynamic forces of compressor labyrinth seals is presented. Basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculaton of wall shear stresses and recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for a small motion about the centered position by expansion in the eccentricity ratio. Integraton of the resultant first-order pressure distribution over the seal defines the rotordynamic coefficients. As an application a rotordynamic analysis of the balance drum labyrinth seal found in an ethylene regrigeration copmressor is carried out. The rotordynamic characteristic results of the labyrinth seal are presented and compared with other types of seals, honeycomb seal and smooth seal.

  • PDF

Numerical Analysis of Heat Flow in Fire Compartment using SIMPLE Algorithm (SIMPLE Algorithm을 이용한 화재실의 열 유체의 수치해석)

  • 김광선;손봉세
    • Fire Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 1992
  • We have derived the general transfer equation for governing the continuity, energy transfer, mass and momentum transfer, and turbulent energy dissipation rate within the fire compartment which has the 800t fire source at the center of the floor. The governing transfer equations have been descretized using the finite volume approach and numerically experimented under the SIMPLE algorithm. In order for the SIMPLE algorithm approach to be physically reliable, the test results are compared with those of Morita's SOR Method using Conjugate Residual Method and found to be close to physical values though the computational convergence time still remains to be upgraded. The treatment of source terms in the system of finite difference equations has been critical in order to converge the governing equations within the appropriate time steps. The criteria of convergence allowance for the whole domain have been checked and the sudden change of the non-linear effects from the source term have been avoided. The criteria has been allowed to be for 5$\times$10$^{-5}$ .

  • PDF