• Title/Summary/Keyword: Compressible Flow

Search Result 829, Processing Time 0.023 seconds

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system (감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구)

  • Garam, Ku;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.705-712
    • /
    • 2022
  • A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.

Performance Analysis of Three-Dimensional Transonic Centrifugal Compressor Diffuser (3차원 천음속 원심압축기 디퓨져 성능연구)

  • Kim, Sang Dug;Song, Dong Joo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.217-222
    • /
    • 1998
  • CSCM upwind flux difference splitting compressible Navier-Stokes method has been used to predict the transonic flows in centrifugal compressor diffuser. The modified cyclic TDMA and the mass flux boundary conditions were used as boundary conditions of the diffuser analysis. With the mass flux boundary condition and the $130{\times}80{\times}40$ grid, the compressible upwind Navier-Stokes method predicted the transonic diffuser flowfield successfully. Plow changes in the impeller exit region due to the strong interaction between impeller exit and vaned diffuser, broad flow separation on the suction surface near hub and shroud was observed from the results of the mass flow rates 6.0 and 6.2kg/s at 27000 rpm. The static pressure increased and the total pressure decreased through the flow passage of the channel diffuser, which were predicted better from the three-dimensional analysis than from the two-dimensional analysis due to the strong effect of the three-dimensional flow. The mass averaged loss coefficients and pressure coefficients were also studied.

  • PDF

A Fundamental Study of Thrust-Vector Control Using a Dual Throat Nozzle (이중목 노즐을 이용한 추력벡터 제어에 관한 기초적 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.25-30
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze the performance of a dual throat nozzle(DTN) at various mass flow rate of secondary flow and nozzle pressure ratios(NPR). Two-dimensional, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. The present computational results were validated with some experimental data available. Based upon the present results, The control effectiveness of thrust-vector is discussed in terms of the thrust coefficient and the discharge coefficient.

A Numerical Simulation on the Process of Diaphragm Opening in Shock Tube Flows

  • Kang, M.S.;Nagdewe, S.;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.275-280
    • /
    • 2008
  • Shock tube flow measurement has been often troubled with a finite opening time of diaphragm, but there is no systematic work to investigate its effect on the shock tube flow. In the present study, both the experimental and computational works have been performed on the shock tube flows at low pressure ratios. The computational analysis has been performed using the two-dimensional, unsteady, compressible Navier-Stokes equations, based upon a TVD MUSCL finite difference scheme. It is known that the present computational results reproduce the experimental data with good accuracy and simulate successfully the process of diaphragm opening as a function of time. The concept of an imaginary center is introduced to specify the non-centered expansion wave due to a finite opening time of diaphragm. The results obtained show that the diaphragm opening time is reduced as the initial pressure ratio of shock tube increases, leading to the effect of a finite opening time of diaphragm to be more remarkable at low pressure ratios.

  • PDF

Characteristics of High-Speed Railway Tunnel Entry Compression Wave (고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Lee, Jong-Su;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

Implicit/Explicit Finite Element Method for Euler Flows Inside the Optimum Nozzle (내/외재적 유한요소법을 이용한 최대추력노즐의 설계해석)

  • Yoon W. S.;Kho H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.66-72
    • /
    • 1997
  • Optimum nozzle design exploiting the method of characteristic(M.O.C) has been in application as an efficient design methodology targeting a less weighted and short expansion nozzle. This paper treats the optimum nozzle design and the analysis of the inviscid compressible flow inside. Based on traditional Rao's method, the optimum nozzle design is coded with minor modifications for the identification of the control surface across which the mass flux should be conserved. Internal flow field is simulated numerically by M.O.C and implicit/explicit Taylor-Galerkin finite element method(F.E.M) with the aid of adaptive remeshing to capture the shock wave, hence improve the accuracy. Designed and calculated flow fields due to the separate analyses show that the mass flux predicted by optimum nozzle design with M.O.C is not conserved across the control surface and the sonic line should be located upstream of the nozzle throat. Rao's optimum nozzle design methodology exaggerates the momentum thrust and tends to overemphasize the engine performance loss.

  • PDF

NUMERICAL STUDY ON DROPLET SPREAD MOTION AFTER IMPINGEMENT ON THE WALL USING IMPROVED CIP METHOD (수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구)

  • Son, S.Y.;Ko, G.H.;Lee, S.H.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.25-31
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP method. The result using improved CIP method shows the better result of the experiments, comparison with result of original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

A Study of the Impulse Wave Discharged from the Exit of Two Parallel Tubes (두 평행한 관의 출구로부터 방출되는 펄스파에 관한 연구)

  • Kweon Yong-Hun;Kim Heuy-Dong;Lee Dong-Hun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.151-154
    • /
    • 2002
  • The twin impulse wave leads to very complicated flow fields, such as Mach stem, spherical waves, and vortex ring. The twin impulse wave discharged from the exits of the two tubes placed in parallel is investigated to understand detailed flow physics associated with the twin impulse wave, compared with those in a single impulse wave. In the current study, the merging phenomena and propagation characteristics of the impulse waves are investigated using a shock tube experiment and by numerical computations. The Harten-Yee's total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The Mach number $M_{s}$, of incident shock wave is changed below 1.5 and the distance between two-parallel tubes, L/d, is changed from 1.2 to 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. The results obtained show that on the symmetric axis between two parallel tubes, the peak pressure produced by the twin-impulse waves and its location strongly depend upon the distance between two parallel tubes, L/d and the incident shock Mach number, $M_{s}$. The predicted Schlieren images represent the measured twin-impulse wave with a good accuracy.

  • PDF

Study of the Impulse Wave Impinging upon an Inclined Flat Plate (경사판에 충돌하는 펄스파에 관한 연구)

  • Kweon, Y.H.;Lee, D.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.438-443
    • /
    • 2001
  • Plate impingement of the impulse wave discharged from the open end of a duct is numerically investigated using a CFD method. Harten-Yee Total Variation Diminishing method is used to solve the unsteady, compressible flow governing equations. The Mach number, the flat plate inclination and the distance between the duct exit and inclined flat plate are changed to investigate their effects on the impinging flow field. The impulse wave impingement on the inclined flat plate depends on Mach number $M_s$ and the plate inclination $\psi$. The pressure distributions on the inclined flat plate show that for a small r/D, the peak pressure at the center of an inclined flat plate decreases with an increase in the plate inclination $\psi$ in the range of $\psi$ from $45^{\circ}$ to $60^{\circ}$ but for a large r/D, the peak pressure decreases with an increase in $\psi$ in the range of $\psi$ from $75^{\circ}$ to $90^{\circ}$. It is also found that for all of r/D, the peak pressure at the center of an inclined flat plate has a maximum value in $\psi=90^{\circ}$.

  • PDF