• Title/Summary/Keyword: Compressibility Factor

Search Result 56, Processing Time 0.02 seconds

A Theoretical Study on the Compressibility Factor of Hydrogen Gas in the High Pressure Tank (고압탱크에서 수소가스의 압축성 인자에 관한 이론적 연구)

  • JI-QIANG LI;HENG XU;JI-CHAO LI;JEONG-TAE KWON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.162-168
    • /
    • 2023
  • The fast refueling process of compressed hydrogen has an important impact on the filling efficiency and safety. With the development and use of hydrogen energy, the demand for precision measurement of filling hydrogen thermodynamic parameters is also increasing. In this paper, the compressibility factor calculation model of high-pressure hydrogen gas was studied, and the basic equation of state and thermo-physical parameters were calculated. The hydrogen density data provided by the National Institute of Standards and Technology was compared with the calculation results of each model. Results show that at a pressure of 0.1-100 MPa and a temperature of 233-363 K, the calculation accuracy of the Zheng-Li equation of state was less than 0.5%. In the range of 0.1-70 MPa, the accuracy of Redich-Kwong equation is less than 3%. The hydrogen pressure more influences on the compressibility factor than the hydrogen temperature does. Using the Zheng-Li equation of state to calculate the compressibility factor of on-board high pressure hydrogen can obtain high accuracy.

Convergence Characteristics of Upwind Method for Modified Artificial Compressibility Method

  • Lee, Hyung-Ro;Lee, Seung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.318-330
    • /
    • 2011
  • This paper investigates the convergence characteristics of the modified artificial compressibility method proposed by Turkel. In particular, a focus is mode on the convergence characteristics due to variation of the preconditioning factor (${\alpha}_u$) and the artificial compressibility (${\beta}$) in conjunction with an upwind method. For the investigations, a code using the modified artificial compressibility is developed. The code solves the axisymmetric incompressible Reynolds averaged Navier-Stokes equations. The cell-centered finite volume method is used in conjunction with Roe's approximate Riemann solver for the inviscid flux, and the central difference discretization is used for the viscous flux. Time marching is accomplished by the approximated factorization-alternate direction implicit method. In addition, Menter's k-${\omega}$ shear stress transport turbulence model is adopted for analysis of turbulent flows. Inviscid, laminar, and turbulent flows are solved to investigate the accuracy of solutions and convergence behavior in the modified artificial compressibility method. The possible reason for loss of robustness of the modified artificial compressibility method with ${\alpha}_u$ >1.0 is given.

Cubic Equation of State Analysis for the Prediction of Supercritical Thermodynamic Properties of Hydrocarbon Fuels with High Critical Compressibility Factor (고 임계 압축인자를 갖는 탄화수소 연료의 초임계 열역학적 물성 예측을 위한 상태방정식 분석)

  • Jae Seung Kim;Jiwan, Seo;Kyu Hong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.24-34
    • /
    • 2022
  • In order to predict the cooling performance of a regenerative cooling channel using hydrocarbon fuel operating in the supercritical region, it is essential to predict the thermodynamic properties. In this study, a comparative analysis was performed on two-parameter equations of state (SRK(Soave-Redlich-Kwong), PR(Peng-Robinson) equations of state) and three-parameter equations of state (RK-PR equations of state) to appropriately predict density and specific heat according to the critical compressibility factor of polymer hydrocarbons. Representatively, n-dodecane fuel with low critical compressibility factor and JP-10 fuel with high critical compressibility factor were selected, and an appropriate equation of state was presented when predicting the thermodynamic properties of the two fuels. Finally, the prediction results of density and specific heat were compared and verified with NIST REFPROP data.

Compression of hollow-circular fiber-reinforced rubber bearings

  • Pinarbasi, Seval;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.361-384
    • /
    • 2011
  • Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the bearing but also increases the maximum shear strain developing in the bearing due to compression, both of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The problem is handled using the most-recent formulation of the "pressure method". The analytical solutions are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing's compression modulus and maximum shear strain in the bearing in view of four key parameters: (i) reinforcement extensibility, (ii) hole size, (iii) bearing's shape factor and (iv) rubber compressibility. It is shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the bearing is high and rubber compressibility is not negligible. Numerical studies also show that the existence of even a very small hole can increase the maximum shear strain in the bearing significantly, which has to be considered in the design of such annular bearings.

Modeling and Control of a Hydraulic Semiactive Vibration Absorber (유압식 반능동 진동 흡수기의 모델링과 제어)

  • 모창기
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.700-705
    • /
    • 1998
  • Recent past work has demonstrated that hydraulic semiactive vibration absorbers hold the promise of providing an ideal means of mitigating structural vibration. This paper examines a factor that must be treated when designing a hydraulic semiactive vibration absorber for application to a full scale structure; fluid compressibility. An expanded and consistent dynamic model of the flow process is first established. A simple feedback control is then tested on a single degree of freedom laboratory structure to verify the findings.

  • PDF

Compressibility Factor Effect on the Turbulence Heat Transfer of Super-critical Carbon Dioxide by an Elliptic-blending Second Moment Closure (타원혼합모형을 이용한 초임계상태 이산화탄소의 압축성계수에 의한 난류열전달 특성)

  • Han, Seong-Ho;Seo, Jeong-Sik;Shin, Jung-Kun;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.40-50
    • /
    • 2007
  • The present contribution describes the application of elliptic-blending second moment closure to predict the gas cooling process of turbulent super-critical carbon dioxide flow in a square cross-sectioned duct. The gas cooling process under super-critical state experiences a drastic change in thermodynamic and transport properties. Redistributive terms in the Reynolds stress and turbulent heat flux equations are modeled by an elliptic-blending second moment closure in order to represent strongly non-homogeneous effects produced by the presence of walls. The main feature of Durbin's elliptic relaxation second moment closure that accounts for the nonlocal character of pressure-velocity gradient correlation and the near-wall inhomogeneity guaranteed by the elliptic blending second moment closure.

An Equation of State for the PVT Behavior of Gaseous Refrigerants (기체냉매의 PVT 거동을 나타내기 위한 상태방정식)

  • Park, K.;Sonntag, R.E.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.98-111
    • /
    • 1995
  • The objective of this work is to investigate the form of equations of state for specific refrigerants. In particular, equations of the extended van der Waals form have been studied. As a result, a new equation of state has been developed and tested over ranges of pressure and density up to 5 and 1.5 times critical, respectively. The equation of state separates the compressibility factor into two parts. One is the repulsive compressibility factor and the other is attractive. The former is in the same form of Carnahan-Starling's repulsive term with constant hard-sphere volume. The latter is based on a combination of two different functions linear to density. The equation of state developed here has 12 adjustable parameters and correlates PVT data successfully. All properties are in reduced forms.

  • PDF

Mechanical Characteristics and Compressibility of Light-Weighted Foam Soil (경량혼합토에 대한 압축성 및 역학적 특성)

  • 윤길림;김병탁;박수용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.673-680
    • /
    • 2002
  • The mechanical characteristics and compressibility of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit-weight and increase compressive strength. For this purpose, the unconfined compression tests and triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and confining stresses. The test results of LWFS indicated that the stress-strain relationship and the compressive strength are strongly influenced by the cement contents rather than the intial water contents of the dredged soils. In this study, the normalized factor considering the ratio of initial water contents, cement contents, and foam contents is suggested to evaluate the relationship between compressive strength and normalized factor.

  • PDF

Oxygen diffusion on W(110) : Comparison of experiment and theory (W(110)면에서의 산소의 확산 : 실험과 이론의 비교)

  • 남창우;홍진표;김채옥
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.181-186
    • /
    • 1999
  • The diffusion of oxygen atoms on tungsten (110) surface is studied by comparison of experiment results and recent calculations. It has been suggested that the thermodynamic factor which is inversely proportional to be compressibility has strong temperature dependence which may cause non-Arrhenius behavior of diffusion coefficient. Recent experiments, however, indicate effectively no temperature dependence of this factor and support the view that non-Arrhenius behavior originates from the dynamic factor rather than the thermodynamic factor. Discrepancies in coverage dependence of physical quantities between theory and experiment are discussed.

  • PDF

Ultrasonic Speed and Isentropic Compressibility of 2-propanol with Hydrocarbons at 298.15 and 308.15 K

  • Gahlyan, Suman;Verma, Sweety;Rani, Manju;Maken, Sanjeev
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.668-678
    • /
    • 2017
  • Intermolecular interactions were studied for binary mixtures of 2-propanol + cyclohexane, n-hexane, benzene, toluene, o-, m- and p-xylenes by measuring ultrasonic speeds (u) over the entire range of composition at 298.15 K and 308.15 K. From these results the deviation in ultrasonic speed was calculated. These results were fitted to the Redlich-Kister equation to derive the binary coefficients along with standard deviations between the experimental and calculated data. Acoustic parameters such as excess isentropic compressibility ($K_s^E$), intermolecular free length ($L_f$) and available volume ($V_a$) were also derived from ultrasonic speed data and Jacobson's free length theory. The ultrasonic speed data were correlated by Nomoto's relation, Van Dael's mixing relation, impedance dependence relation, and Schaaff's collision factor theory. Van Dael's relation gives the best prediction of u in the binary mixtures containing aliphatic hydrocarbons. The ultrasonic speed data and isentropic compressibility were further analyzed in terms of Jacobson's free length theory.