• Title/Summary/Keyword: Compressed water

Search Result 169, Processing Time 0.028 seconds

A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구)

  • Jo, S.M.;Choi, J.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.

The Effect of Stack Clamping Pressure on the Performance of a Miniature PEMFC Stack (소형 고분자 연료전지 스택의 체결압력에 따른 성능 특성)

  • Kim, Byung-Ju;Yim, Sung-Dae;Sohn, Young-Jun;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Young-Chai
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.499-504
    • /
    • 2009
  • The effect of gas diffusion layer (GDL) compression caused by different stack clamping pressures on fuel cell performance was experimentally studied in a miniature 5-cell proton exchange membrane fuel cell (PEMFC) stack. Three stacks with different GDL compressions, 15%, 35% and 50%, were prepared using SGL 10BC carbon fiber felt GDL and Gore 57 series MEA. The PEMFC stack performance and the stack stability were enhanced with increasing stack clamping pressure resulting in the best performance and stability for the stack with higher GDL compressions up to 50%. The excellent performance of the stack with high GDL compression was mainly due to the reduced contact resistance between GDL and bipolar plate in the stack, while reduced gas permeability of the excessively compressed GDL in the stack hardly affected the stack performance. The high stack clamping pressure also resulted in excessive GDL compression under the rib areas of bipolar plate and large GDL intrusion into the channels of the plate, which reduced the by-pass flow in the channels and increase gas pressure drop in the stack. It seems that these phenomena in the highly compressed stack enhance the water management in the stack and lead to the high stack stability.

Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors

  • Heo, Jin Young;Park, Jung Hwan;Chae, Yong Jae;Oh, Seung Hwan;Lee, So Young;Lee, Ju Yeon;Gnanapragasam, Nirmal;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2427-2444
    • /
    • 2021
  • The lack of plant-side energy storage analysis to support nuclear power plants (NPP), has setup this research endeavor to understand the characteristics and role of specific storage technologies and the integration to an NPP. The paper provides a qualitative review of a wide range of configurations for integrating the energy storage system (ESS) to an operating NPP with pressurized water reactor (PWR). The role of ESS technologies most suitable for large-scale storage are evaluated, including thermal energy storage, compressed gas energy storage, and liquid air energy storage. The methods of integration to the NPP steam cycle are introduced and categorized as electrical, mechanical, and thermal, with a review on developments in the integration of ESS with an operating PWR. By adopting simplified off-design modeling for the steam turbines and heat exchangers, the results show the performance of the PWR steam cycle changes with respect to steam bypass rate for thermal and mechanical storage integration options. Analysis of the integrated system characteristics of proposed concepts for three different ESS suggests that certain storage technologies could support steady operation of an NPP. After having reviewed what have been accomplished through the years, the research team presents a list of possible future works.

The Study on the Humic Acid Removal using Underwater Plasma Discharge (수중 방전을 이용한 휴믹산 제거)

  • Hong, Eunjung;Chung, Paulgene;Ryu, Seungmin;Park, Junseuk;Yoo, Seungryul;Lho, Taihyeop
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.367-374
    • /
    • 2012
  • A flotation process has a shorter processing time and needs less space than a sedimentation process. Dissolved air flotation process (DAF) is an efficient flotation method and used in a conventional wastewater treatment process. However, DAF requires the circulation of water containing compressed air and requires expensive installation and operation cost. Plasma Air Flotation (PAF) process is able to float flocs by micro bubbles generated from underwater plasma without the circulation of bubbly water and additional saturators. Therefore, PAF can be an alternative solution overcoming economic barriers. In this study, Humic acid removal efficiency by PAF process was compared with that of sedimentation process. 44.67% and 87.3% reduction rate based on UV 254 absorbance has been measured in sedimentation and PAF respectively. In particular, PAF in the flocculation zone can dramatically remove humic acid from water. In flocculation zone, PAF can separate organic matters but sedimentation cannot.

Feasibility Study on Removal of Total Suspended Solid in Wastewater with Compressed Media Filter (압축성 여재 여과를 이용한 하수의 고형물질 제거 타당성 연구)

  • Kim, Yeseul;Jung, Chanil;Oh, Jeill;Yoon, Yeomin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.84-95
    • /
    • 2014
  • Recently, as a variety of techniques of CMF (Compressed media filter) that has advantages of high porosity and compressibility have been developed in the U.S. and Japan. Therefore, the interest of intensive wastewater treatment using CMF has grown. This study examined the feasibility of CMF with varying sewage water quality to determine the optimum operating conditions. A preliminary tracer test that investigated the filtering process under various compression and flow rate conditions was performed. In a high compression condition, different porosities were applied to each depth of the column. Therefore, a distinct difference between a theoretical value and results of tracer test was observed. For the TSS (Total suspended solid) removal and particle size distribution of CMF for pre-treatment water under the various compression conditions, the compression ratio of 30 percent as the optimal condition showed greater than 70% removal efficiency. In addition, the compression ratio of >15% was required to remove small-sized particles. Also, an additional process such as coagulation is necessary to increase the removal efficiency for < $10{\mu}m$ particles, since these small particles significantly influence the effluent concentration. Modeling results showed that as the compression rate was increased, TSS removal efficiency in accordance with each particle size in the initial filtration was noticeably observed. The modeling results according to the depth of column targeting $10{\mu}m$ particles having the largest percentage in particle size distribution showed that 150-300 mm in filter media layer was the most active with respect to the filtering.

An experimental study on the influence of undular bore on the hydraulic stability at Shinwol rainwater storage and drainage system (불규칙 단파가 신월저류배수시설의 수리적 안정성에 미치는 영향에 대한 실험 연구)

  • Oh, Jun Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.313-323
    • /
    • 2019
  • Deep Tunnel system is a large-scale urban flood control facility installed underground in order to reinforce the lack of drainage systems in developed cities. In a structure like a deep tunnel system, the undular bore generated in the downstream causes a problem in the hydraulic stability of the tunnel. In this study, to investigate the influence of the undular bore on the hydraulic stability at the "Shinwol rainwater storage and drainage system", under construction for the first time in the country, a hydraulic model experiment was conducted on various flooding inflow scenarios. As a result of the hydraulic model experiment carried out in this study, the undular bore generated downstream is trapped in the pipe while moving to upstream, pushes the compressed air. It is judged that overflow occurred by choking the vertical drop shaft in the process when this compressed air is being exhaust through the upstream vertical drop shaft and blocking flood inflow. In addition, the analysis of velocity of undular bore shows that the undular bore transfers energy, and at this time, the pressure rose in the pipe and the velocity increment occurred of the undular bore. Further studies are needed to predict the size and velocity of undular bore, which plays an important role in the hydraulic stability of the tunnel in the deep tunnel system.

Composting and Fertilizing Characteristics of Poultry Manure Mixture with Compressed Expansion Rice Hull as Bulking Agent (수분조절제로서 팽화왕겨를 이용한 계분 발효 특성 및 시비 효과)

  • Kim, Young-Sun;Cho, Sung-Hyun;Lee, Hoon-Soo;Lee, Geung-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.5-13
    • /
    • 2020
  • This study was conducted to evaluate effects of compressed expansion rice hull (CERH) as bulking agent on physicochemical properties of composting poultry manure (PM) and of its fertilization on lettuce and pak choi growth. Treatments were designed as follows; sawdust treatment (90% PM + 10% sawdust; SP), peatmoss treatment (90% PM + 10% peatmoss; PP), and CERH treatments [PCR1 (90% PM + 10% CERH 1.3 mm) and PCR2 (90% PM + 10% CERH 3.0 mm)]. Physicochemical properties such as temperature, water content, pH, and total carbon of composted poultry piles for 31 days were unaffected by various bulking agents. However, total nitrogen content in compost pile was higher in PP and PCR1 than that of SP or PCR2. After composting for 31 days, content ranges of N, P2O5, and K2O in the composting PM piles were 19.1~19.7%, 47.6~51.6%, 2.76~3.65%, and 2.53~2.90%, respectively. As compared to SP treatment, dry weight of lettuce treated with PP and PCR1 increased by more than 10%, but only in PP for pak choi. These results indicated that CERH 1.3 could be used as bulking agents for composting PM on behalf of peatmoss or sawdust.

The Experimental Study of Distribution Characteristics of Lift-force Acting under Pier Deck (잔교상판(棧橋床板)에 작용(作用)하는 양압력(揚壓力) 분포특성(分布特性)에 관한 실험적(實驗的) 연구(硏究))

  • Park, Sang Kil;Park, Hyun Soo;Ahn, Ik Seong;Kim, Woo Saeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.83-90
    • /
    • 2009
  • This study describes the characteristics of distribution of lift-force acting under pier deck through physical experiment. The shape of peak wave pressure was sharp when compressed air existed but was not sharp without that. Values of lift-force was different between edge point and center point in the same block. Distribution of lift-force was expressed differently owing to dimensionless of deck length (l/L), wave steepness (H/L), clearance height per wave height (D/H). The dimensionless factor of D/H affected on the lift-force the clearance between still water surface and decks. This decided the maximum of lift-force. In the case of the same values of D/H, the lift-force are changed by the wave steepness (H/L). Because (D/H) become smaller as the wave steepness (H/L) is increased the height of decks must be decided with the condition which don't have the clearance with $D_{max}$ for the stable design of deck of pier. Effect of reducing lift force was greater in the on-shore than the off-shore according to compressed air existence. This researches points out that design of deck should retain compressed air in order to reduce wave lift force.

WATER VAPOR MASERS: A SIGNPOST FOR LOW MASS STAR FORMATION

  • Migenes, V.;Trinidad, M.A.;Valdettaro, R.;Brand, J.;Palla, F.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.127-129
    • /
    • 2007
  • It is well known that water vapor maser emission at 22.2 GHz is associated with the earliest stages of both low- and high-mass star formation and it can be considered a reliable diagnostic of their evolutionary state. Bright Rimmed Clouds (BRCs) are clouds that have been compressed by an external ionization-shock front which focuses the neutral gas into compact globules. The boundary layer between the neutral gas and the gas ionized by the incident photons is often called "bright rim" but the clumps are sometimes classified also as speck globules or cometary globules depending on their appearance. Small globules with bright rims have been considered to be potential sites of star formation and have been studied in several individual regions. We present results from high resolution VLA observations searching for new candidates of recent star formation in bright-rimmed clouds/globules associated with IRAS point sources.

Hierarchical Compression Technique for Reflectivity Data of Weather Radar (기상레이더 반사도 자료의 계층적 압축 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lim, Sanghun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.793-805
    • /
    • 2015
  • Nowadays the amount of data obtained from advanced weather radars is growing to provide higher spatio-temporal resolution. Accordingly radar data compression is important to use limited network bandwidth and storage effectively. In this paper, we proposed a hierarchical compression method for weather radar data having high spatio-temporal resolution. The method is applied to radar reflectivity and evaluated in aspects of accuracy of quantitative rainfall intensity. The technique provides three compression levels from only 1 compressed stream for three radar user groups-signal processor, quality controller, weather analyst. Experimental results show that the method has maximum 13% and minimum 33% of compression rates, and outperforms 25% higher than general compression technique such as gzip.