• Title/Summary/Keyword: Compound deterioration

Search Result 54, Processing Time 0.027 seconds

Use of Nisin as an Aid in Reduction of Thermal Process of Bottled Sikhae (Rice Beverage)

  • Yoo, Jin-Young;Kwon, Dong-Jin;Park, Jong-Hyun;Koo, Young-Jo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.141-145
    • /
    • 1994
  • Conventional commercial thermal process for preparing Sikhae (Rice beverage) in a hermetically sealed container was evaluated to solve the nutritional deterioration and organoleptic inferiority problem caused by severe heat treatment. A milder thermal process with an aid of Nisin, a GRAS-grade, selectively germicidal compound, was introduced to destroy the putrefactive microorganisms. In this experiment, hot-filling method with Nisin, and thermal processing (at 110$^{\circ}C$ for 15 minutes with Nisin, at 121$^{\circ}C$ for 25 minutes without Nisin) were compared. The quality of Sikhae could be enhanced and over 90% of the thermal process could be conserved by this process in terms of sterilizing value without quality deterioration when processing the bottled Sikhae at 110$^{\circ}$ for 15 minutes $\{(F^{10}{_{121})_{process}=1.54\}$.

  • PDF

Durability Evaluation of Grout in Cablebolt System (케이블볼트 충전재의 내구성 평가)

  • Choi, Jung-In;Kim, Won-Keun;Jeon, Jae-Hyun;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.553-561
    • /
    • 2010
  • Like the shotcrete can be deteriorated by chemical compounds as service years increase, the grout which is used to fasten the cablebolt(rockbolt) system in the underground structures also can be deteriorated by chemical compounds such as sulphate and/or chloride contained in groundwater during service years. This can induce issues on the long term durability of cablebolt(rockbolt) system and consequently on the stability of underground structures. In this study, the deteriorations of long term durability of cement mortar grout by each chemical compound of sulphate or chloride are studied experimentally and also complex deterioration by the mix of sulphate and chloride is investigated. Based on the results obtained in this study, the characteristics and prediction of deterioration of long term durability of cement mortar grout for cablebolt(rockbolt) system are suggested.

  • PDF

The Design Criteria of Elastomeric Bearing for Highway Bridges (교량용 탄성받침의 설계압축응력에 대한 고찰)

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.136-143
    • /
    • 1998
  • Elastomeric bearing is used as one of the most useful way for isolation structures, because the horizontal stiffness is much lower than the vertical stiffness. The quality of Elastomeric bearing depends on the vulcanization procedure to manufacture, which produces the elasticity of the rubber from the compound of rubber and sulphur. The durability of Elastomeric bearing is affected by the deterioration due to ozone and ultra-violet attack. but the durability during the design life of bridges can be assured by the sufficient size of the bearing in spite of the deterioration in surface. In the design criteria of Elastomeric bearing, the stability of the bearings is evaluated by shear strain due to compression, lateral displacement, and rotation. The question how soft rubber can sustain heavy structure is now able to be solved by Ultimate capacity test of Laminated elastomeric Bearings, which results 1,200kg/$\textrm{cm}^2$ of the max. compressive stress and this shows what a sufficient safety factor Elastomeric bearing has!

  • PDF

Applicability on Water Treatment Structure of Anti-corrosive Sheet Molding Compound Panel (고분자수지계 패널형 방수방식재의 수처리구조물 적용성에 관한 실험적연구)

  • Seo, Hyun Jae;Park, Jin Sang;Bae, Kee Sun;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.161-163
    • /
    • 2011
  • Due to various kind of waterproof materials and methods, which is difficult to select the most appropriate to waterworks. The materials used to prevent the deterioration of the service life is short, because of the chemical erosion. So, in the 2010 Office of Waterworks Seoul Metropolitan Government has set new standards. Recently, SMC panel is a trend that is being applied to water treatment facilities. However, SMC panel has not yet implemented a performance evaluation. Therefore, this study to confirm that satisfaction for the Office of Waterworks Seoul Metropolitan Government of the performance requirements, when the applied the SMC panel to water treatment structure.

  • PDF

Material Properties Degradation of Composite Body Panel Exposed to High Temperature (복합재료 Body Panel의 고온열화 특성)

  • Pyun, Hyun-Joong;Nam, Hyun-Wook;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.219-224
    • /
    • 2000
  • A research for development of composite body panel is in progress for lightening tare. Low specific weight LPMC (Low pressure molding compound) has advantages such as lightweight and resistance to dent and corrosion. In this study, tensile, bending and impact tests for the LPMC and SPRC35 (High tension steel plate) were carried out and compared. Although mechanical properties of SPRC35 are better than the LPMC, the LPMC satisfies basic requirements for car body panel. The high temperature exposed LPMC were degraded due to fiber-matrix debonding and deterioration of resin.

  • PDF

An Experimental Study on Piping Feasibility of PE Compound Pipe for Fire Protection Service (PE 이종강관의 소방용 배관 적용성에 관한 실험적 연구)

  • Park, Jeong-Hwa;Oh, Cheon-Young;Kwark, Ji-Heon;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.55-61
    • /
    • 2016
  • In this study, to determine whether it is possible to apply Polyethylene (PE) compound pipe, which was developed to solve the problem caused by the corrosion of the fire protection piping currently in usein water based fire extinguishing systems, we performed an actual mockup fire test. Since no test standard was available related to the developed compound pipe, we compared and analyzed domestic and international technical materials and test standards and selected suitable fire test standards to evaluate the performance of the PE compound pipe. we applied two fire test standards to the PE compound pipe, viz. those for CPVC and metallic pipes, and conducted a total of 6 experiments to evaluate its performance. According to the results of the first and second fire tests based on the test standard for the CPVC pipe, neither the fitting nor the piping was damaged or deformed and no leakage was observed in the pressure test, which was performed for 5 minutes. For the fire test based on the metallic pipe test standard, a total of 4 experiments were conducted. The first two experiments were conducted to simulate the wet piping system. In the results of this fire test, neither leakage nor rupture was observed from the PE compound pipe and no damage was caused, such as the secession of the PE material. However, in the next two experiments, which simulated the dry system, the PE compound pipe suffered damage and rupture, including deformation before the fire fighting water was discharged. Therefore, we found that the piping performance of the PE compound pipe did not undergo any deterioration, including fusion, deformation, or damage, in the wet piping system simulated fire test.

An experimental study on the durability evaluation of concrete applied functional nano composite inorganic activated carbon based coatings (기능성 나노복합 무기질 활성탄계 표면 처리제를 적용한 콘크리트의 내구성능 평가에 관한 실험적 연구)

  • Yang, Gi-Young;Jang, Seog-Jae;Baek, Jong-Myeong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1385-1390
    • /
    • 2006
  • Concrete structure can be deteriorated by ingress of moisture and aggressive agents. To maintain the sound performance of concrete structure during the service life, it needs to protect concrete from ingress of moisture and aggressive agents before arising deterioration of concrete. Protection of concrete is possible by surface treatment. In this study, durability of the functional nano composite inorganic activated carbon based coatings which can provide a barrier against the ingress of moisture or aggressive ions to concrete is discussed. For the durability evaluation of the coatings, fine void structure evaluation test, chloride penetration acceleration test, accelerated carbonation test, freezing and thawing test, and the accelerated test of chemical erosion are conducted. As the result of this study, the functional nano composite inorganic activated carbon based coatings which became one formed complex compound with adsorption and porosity on concrete surface, had an effect on the function of far infrared radiation, antimicrobial action, air cleaning, airing assurance, and the interception of moisture of deterioration factor, chloride ion, carbon dioxide, sulfate, and so on.

  • PDF

Synthesis and Properties of Modified Polyesters Containing Phosphorus and Chlorine for Flame-Retardant Coatings (난연도료용 인과 염소 함유 변성폴리에스터의 합성 및 성질)

  • Park, Hong-Soo;Ahn, Sung-Hwan;Shim, Il-Woo;Jo, Hye-Jin;Hahm, Hyun-Sik;Kim, Yeoung-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.99-109
    • /
    • 2006
  • In order to obtain the maximum flame retardancy as well as the minimum deterioration of physical properties of PU flame-retardant coatings, chlorine and phosphorus functional groups were introduced into the pre-polymer of modified polyesters. In the first step, the tetramethylene bis(orthophosphate) (TBOP) and neohexanediol dichloroacetate (DCA-adduct) intermediates were synthesized. In the second step, 1,4-butanediol and adipic acid monomers were polymerized with the two kinds of intermediates to obtain copolymers. The modified polyesters containing chlorine and phosphorus (ATBA-10C, -20C, and -30C) were synthesized by adjusting that the content of phosphorus compound was fixed as 2wt% and the contents of chlorine compound (dichloroacetic acid) were varied as 10, 20, and 30wt%. Average molecular weight and polydispersity index of the preparation of ATBAs were decreased with increasing DCA content because of the increase in hydroxyl group that retards reaction.

Development of Working Platform for the Polymer Insulator String (송전선로 폴리머애자 공사용 장비 개발)

  • Min, Byeong-Wook;Wi, Shwa-Bok;Bang, Hang-Kwon;Choi, Han-Yeol;Baek, Soo-Gon;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.438-439
    • /
    • 2006
  • Porcelain insulators have generally been used in Korea to insulate a transmission line from the tower, and a highly polymerized compound polymer insulator which has superior stain proof characteristics, has also been used widely. Currently, a worker rides on the suspension insulator string for installation on towers and conductors but in case of polymer insulators, this will pollute and scratch the housing result in durability reduction by deterioration and corona. This study developed a high strength aluminum compound metal lauder designed to work on polymer insulators without riding, and a clamp type connecting device and safety gear for easy installation on the tower and conductor. These polymer insulator work device can be used for 154kV and 345kV polymer insulators through a strength and load test to secure safety. This paper presents field usage.

  • PDF

Effect of activator types on cement mortar with polymeric aluminum chloride waste residue

  • Ping Xu;Yuhao Cui;Dong Han;Minxia Zhang;Yahong Ding
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.149-159
    • /
    • 2023
  • Water glass (WG) and sodium sulfate (SS) were used to prepare polymeric aluminum chloride residue cement mortar (PACRM) by single and compound blending with polymeric aluminum chloride waste residue, respectively. The structural strength and textural characteristics examinations showed that PACRM consistency increased by incorporating WG, but decreased by incorporating SS. When WG and SS were compounded, the mortar consistency initially rose before falling. The compressive strength of PACRM increased and then decreased as WG was increased. The mechanical properties of PACRM were better enhanced by SS than WG, showing no strength deterioration. The main reason for the improved mechanical properties of polymeric aluminum chloride waste residue in the presence of activators is the increased precipitation of reactive substances, such as C-S-H gels, calcium silica, and Ca(OH)2. The density of the specimens with PACRM and the degree of aggregation of hydration products were significantly enhanced by generating more hydration products in the mortar. Further, the cracks and pores were significantly reduced, and the matrix structure was continuous and dense at 5% SS doping and 3% compound doping.