• Title/Summary/Keyword: Compost Odor Control

Search Result 19, Processing Time 0.023 seconds

Biofiltration Technology Application for Livestock and Compost Facility Odor Control (축사와 퇴비 시설 취기제어를 위한 생물학적 탈취 기술의 적용)

  • 홍지형
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.153-160
    • /
    • 2000
  • Odor control for livestock and compost facilities has focused on manure handling and treatment during storage and land application, however, large amount of malodorous air is emitted and it is one of main sources of malodour in livestock farming. Biological treatment or biodegradation involves converting an organic contaminant to carbon dioxide and water using natural bacteria. Biofiltration is an effective air pollution control technology that uses microorganisms to breakdown gaseous contaminants and produce innocuous end products. Investment and operating costs on the biofiltration are lower than for thermal and chemical oxidation processes. This paper is intended to provide an overview of basic design and operating criteria for biofilters to control odors from livestock and compost facilities.

  • PDF

Volatile Fatty Acids Production During Anaerobic and Aerobic Animal Manure Bio-treatment

  • Hong, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.219-232
    • /
    • 2007
  • Odors from manures are a major problem for livestock production. The most significant odorous compounds in animal manure a.e volatile fatty acids(VFAs). This work reviews the VFAs from the anaerobic sequencing biofilm batch reactor(ASBBR), anaerobic sequencing batch reactor(ASBR), solid compost batch reactor(SCBR), and aerobic sequencing batch reactor(SBR) associated with the animal manure biological treatment. First, we describe and quantify VFAs from animal manure biological treatment and discuss biofiltration for odor control. Then we review certain fundamentals aspects about Anaerobic and aerobic SBR, composting of animal manure, manure compost biofilter for odorous VFAs control, SBR for nitrogen removal, and ASBR for animal wastewater treatment systems considered important for the resource recovery and air quality. Finally, we present an overview for the future needs and current experience of the biological systems engineering for animal manure management and odor control.

  • PDF

Characteristics of Bio-filter Support Media for the Odor Control (악취가스 제어를 위한 Bio-filter 담체의 특성 비교)

  • Lee, Hye-Sung;Chu, Duk-Sung;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • Bio-filtration utilizes microorganisms fixed to a porous medium to metabolize pollutants present in an air stream. The microorganisms grow in a bio-film on the surface of a medium or are suspended in the water phase surrounding the medium particles. Therefore, bio-filter support media play one of the most important key roles in bio-filtration of gas phase pollutants. To characterize and select the appropriate support media, gas adsorption capacity and microorganism immobilization were investigated in lab-scale experiments for the selected target support media which were compost I (compost from lab-scale process), compost II (compost from municipal facility), bark, wood chip, orchid stone and vermiculite. As odor materials, ammonia and trimethylamine were utilized. From the result of experiments, bark was superior to any other support media tested in adsorption capacity as much as 12.5 mg ammonia per 1 g bark. In trimethylamine adsorption, bark and wood chip showed a remarkable results of 21.1 and 14.1 mg/g respectively. On the other hand, microorganism fixation test determined by the count of nitrogen oxidizing microbes population, the compost II and wood chips showed the best results. Considering the characteristics of materials and the operating condition of the bio-filter, bark, wood chip, and compost II are applicable to the support media of bio-filter when they are appropriately blended on the basis of studying the media pH, packing porosity and moisture contents.

Performance Characteristics of Matured Compost Biofiltration of Ammonia Gas from the Agitated Composting (교반식 퇴비화 암모니아가스의 부숙퇴비를 이용한 탈취성능 특성)

  • 홍지형;박금주
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Real sized open type biofilter system was manufactured to control the odor generated from the agitated composting system which composted swine manure and sawdust mixtures. The aim of this research was to develop a biofilter system using matured compost and to evaluate the performance of the biofilter system. Average ammonia reduction rate through the biofilter was 84% during about two month period of composting. The maximum ammonia concentration after filtering was 45ppm lower than allowable value of 50ppm. It was concluded that compost can be used as a biofilter materials.

  • PDF

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF

A Review on Efficient Operation Technology of Compost Depot (퇴비사의 효율적인 운영기술에 대한 고찰)

  • Yang, Il-Seung;Ji, Min-Kyu;Jeon, Byong-Hun
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.345-356
    • /
    • 2017
  • The composting is a biological process that converts organic matter into useful resources such as fertilizers. It is a continuous transition of microbial communities to adapt changes in organic matter and environmental conditions (carbonation rate, temperature, humidity, oxygen supply, pH, etc.). Most of the composting plants are located in the proximity of the residential areas. It is a general scenario where government authorities receive complaints from the local residents due to release of odor from the composting, and has become a social problem in Korea. Identification of dominant microorganisms, understanding change in microbial communities and augmentation of specific microorganism for composting is vital to enhance the efficiency of composting, quality of the compost produced, and reduction of odor. In this paper, we suggest the optimum operation conditions and methods for compost depot to reduce odor generation. The selection of the appropriate microorganisms and their rapid increase in population are effective to promote composting. The optimal growth conditions of bacteria such as aeration (oxygen), temperature, and humidity were standardized to maximize composting through microbial degradation. The use of porous minerals and moisture control has significantly improved odor removal. Recent technologies to reduce odor from the composting environment and improved composting processes are also presented.

Quality Criteria of Manure Compost and Composting Odor Control (가축분뇨 퇴비 품질기준 및 퇴비화 악취 저감기법)

  • 홍지형
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.57-60
    • /
    • 2003
  • 앞으로 친환경 유기농업을 위한 축산환경 보전 및 퇴비 유통과 이용을 촉진하기 위해서는 대기, 수질, 토양오염 등의 환경오염을 방지하는 축산 환경기술 개발뿐만 아니라, 축분퇴비품질 기준면에서 경종농가 작물 사용에 적합한 고품질 퇴비제조와 간단한 평가 방법의 확립이 필요한 시점에 와 있다.

  • PDF

Control of Odor Emissions Using Biofiltration: A Case Study of Dimethyl Disulfide

  • Kim, Jo-Chun;Bora C. Arpacioglu;Eric R. Allen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.153-163
    • /
    • 2002
  • A laboratory- scale dual-column biofilter system was used to study the biofiltration of dimethyl disulfide (DMDS). The gas flow rate and DMDS concentration to the biofilter were varied to study their effect on the remov-al of dimethyl disulfide. Operating parameters such as pH, temperature, and water content were monitored during the biofilter operation and necessary precautions were taken to keep these parameters within the acceptable limits. It was observed that the removal efficiency of DMDS was optimal at neutral pH values. After five month op-eration, the neutralization of the filter beds with sodium carbonate became necessary for the optimum operation of the biofilters. The microbial population already present in the compost mixtures was found to be adequate in treat-ing DMDS. The compost mixtures were found to be similar in terms of biofiltration efficiency of DMDS. However, pressure drops observed in the first column compost mixture (compost/ peat mulch) was extremely high, making this compost economically not feasible. The second mixture (compost/bark) provided pressure drops within accept-able limits. A minimum residence time of 30 seconds at the optimal operating conditions appeared to be adequate for achieving high removal efficiencies (>90%).

Odor control of Foodwaste Treatment Facilities (음식물류폐기물처리시설의 악취관리대책에 관한 연구)

  • Kim, Sung-Bum;Oh, Gil-Jong;Kim, Kye-Yeun;Jung, Myung-Sook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.71-82
    • /
    • 2006
  • This study was carried out to assess and analyze the overall problems of the facilities in recycling and treating of foodwaste on the basis of the unit operation facilities. It proposes effective alternatives for the high profitable management that can meet the regulation of the facilities. The study is composed of several parts including a collection of academic reports, field studies regarding the facilities operated by local government and the private sector, the analysis on odor samples from compost facilities and processing facilities for animal feed from foodwaste. Twenty facilities were surveyed on the field to find out the existing problems and to compare between facilities. Several facilities didn't meet the governmental regulation on some processes, especially the stages of input, storage, odor control and the qualities of final products under the unit equipment operation. The analysis on the odors from the phases of input, shredding and fermentation of a compost facility and processing facilities for feed, the odors from shredding equipments were higher in concentration than the others. The Major odors from the composting facility contained hydrogen sulfide ($H_2S$), methyl mercaptan ($CH_3{SH}$), Dimethyl sulfide ($(CH_3)_2S$) and Ammonia ($NH_3$) and the major odors from the animal feed facility contained methyl mercaptan ($CH_3{SH}$), Trimethylamine ($(CH_3)_3N$) and Acetaldehyde ($CH_3CHO$).

  • PDF

A Comparative Study on the Aerobic Biodegradation of the Continuous and Intermittent Aeration in Bin Composting System

  • Hong, Ji-Hyung;Choi, Byoung-Min;Park, Keum-Joo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.61-67
    • /
    • 2000
  • Composting of hog manure amended with sawdust trials lasted three weeks and used pilot-scale in bin composting system. Results showed that the rise temperature and carbon dioxide evolution in compost during the composting decomposition process were affected by the aeration method, pH, C/N, moisture content, bulk density and particle size distribution. No significant differences existed in biophysical properties of the composit produced from the continuous and intermittent aeration method. The intermittent aeration was very successful in compost odor control and required less time to reach stability than the continuous aeration.

  • PDF