• Title/Summary/Keyword: Composition structural system

Search Result 177, Processing Time 0.026 seconds

Properties of GST Thin Films for PRAM with Composition (PRAM용 GST계 박막의 조성에 따른 특성)

  • Jung, Myung-Hun;Jang, Nak-Won;Kim, Hong-Seung;Ryu, Sang-Ouk;Lee, Nam-Teal;Yoon, Sung-Min;Park, Young-Sam;Lee, Seung-Yun;Yu, Byoung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.203-204
    • /
    • 2005
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. Among the phase change materials $Ge_2Sb_2Te_5$(GST) is very well known for its high optical contrast in the state of amorphous and crystalline. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the structural properties of GST thin films with composition were investigated for PRAM. The 100-nm thick GeTe and $Sb_2Te_3$ films were deposited on $SiO_2$/Si substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films, we performed x-ray diffraction (XRD) and atomic force microscopy (AFM).

  • PDF

Manufacturing and Material Analysis of Collagen/Chitosan Conjugated Fibers for Medical Application (의료용 소재 활용을 위한 콜라겐/키토산 복합섬유의 제조 및 특성 분석)

  • Gwak, Hyeon Jung;Ahn, Hyunchul;Lee, Won Jun;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.131-140
    • /
    • 2021
  • Collagen and chitosan are used in medical and cosmetic materials as natural polymers. In order to utilize the advantages of the materials, collagen/chitosan conjugated wet-spun fibers were prepared. The analysis of surface, optical, thermal and mechanical properties was carried out on the various composition of collagen and chitosan. As a result of images analysis, it was verified that the collagen/chitosan conjugated fibers were stably spun. In addition, the optical and thermal properties of fibers were observed to be changed by hydrogen bond. As a result, an optimized composition could be found at an appropriate content. Moreover, the optimized fibers have mechanical properties similar to chitosan fibers, while improving the structural and thermal stability by its hydrogen bond. In addition, the wet-spun collagen/chitosan conjugated fibers can be applied to medical and various fields through mechanical properties according to content control.

Plan Composition Expressed in the Architecture of Art Gallery Designed by Louis I. Kahn - Focus on the Yale University Art Gallery Extension - (Louis I. Kahn의 미술관 건축에 나타난 평면구성에 관한 연구 - Yale University Art Gallery Extension을 중심으로 -)

  • Kim, Hong-Bae
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.3
    • /
    • pp.128-135
    • /
    • 2012
  • The purpose of this study is to investigate and analyze the compositional elements of plan of art museums by selecting architectural works, which have strong symbolic meaning when evaluating value, from architectural works by Louis Kahn. First, the centrality of artworks, which are being displayed at the Yale Art Gallery, is complex. It includes three patterns of Void (spatial) Centrality+Symbolic Centrality+Functional Centrality among the five patterns suggested in this study. Second, the ratio system of interior space, which is expressed in the extension of the Yale Art Gallery, can be classified into the floor and walls. The floor used the square 1:1 ratio system. The ceiling used the grid patterns of equilateral triangles (regular tetrahedrons). It was applying a geometric ratio system when creating forms by using one side as a beam and the other sides as decorations of the ceiling. Third, the contours of interior space, which were expressed in Kahn's works, used the method of forming separate space according to the contouring rule (structural unit) defined by columns, and they were used in constructing the entire space through the integration of separate spaces. Fourth, according to the characteristics that were expressed by artworks displayed within the Yale Art Gallery Extension, the concept of accessibility was not as clear as that of residential buildings, because an approach of respecting existing architecture and context was used, rather than the starting point of interior space, or differentiated circulation, which has the function of a determined position.

  • PDF

Effect of stress-strain curve changing with equal channel angular pressing on ultimate strength of ship hull stiffened panels

  • Sekban, Dursun Murat;Olmez, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.473-484
    • /
    • 2021
  • Similar to other structures, ultimate strength values showing the maximum load that the structure can resist without damaging has great importance on ships. Therefore, increasing the ultimate strength values will be an important benefit for the structure. Low carbon steels used in ships due to their low cost and good weldability. Improving the ultimate strength values without interfering with the chemical composition to prevent of the weldability properties of these steels would be very beneficial for ships. Grain refinement via severe plastic deformation (SPD) is an essential strengthening mechanism without changing the chemical composition of metallic materials. Among SPD methods, equal channel angular pressing (ECAP) is one of the most commonly used one due to its capacity for achieving bulk ultrafine-grained (UFG) materials. When the literature is examined, it is seen that there is no study about ultimate strength calculation in ships after ECAP. Therefore, the mean purpose of this study is to apply ECAP to a shipbuilding low carbon steel to be able to achieve mechanical properties and investigate the alteration of ship hull girder grillage system's ultimate strength via finite element analysis approach. A fine-grained (FG) microstructure with a mean grain size of 6 ㎛ (initial grain size was 25 ㎛) was after ECAP. This microstructural evolution brought about a considerable increase in strength values. Both yield and tensile strength values increased from 280 MPa and 425 MPa to about 420 MPa and 785 MPa, respectively. This improvement in the strength values reflected a finite element method to determine the ultimate strength of ship hull girder grillage system. As a result of calculations, it was reached significantly higher ultimate strength values (237,876 MPa) compared the non-processed situation (192,986 MPa) on ship hull girder grillage system.

Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic

  • Nath, K. Amar;Prasad, K.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.115-128
    • /
    • 2012
  • The structural and electrical properties of $(1-x)Ba(Sm_{1/2}Nb_{1/2})O_3-xBaTiO_3$; ($0{\leq}x{\leq}1$) ceramics were prepared by conventional ceramic technique at $1375^{\circ}C$/7 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were derived from the X-ray diffraction (XRD) data using FullProf software whereas crystallite size and lattice strain were estimated from Williamson-Hall approach. XRD analysis of the compound indicated the formation of a single-phase cubic structure with the space group Pm m. Dielectric study revealed that the compound $0.75Ba(Sm_{1/2}Nb_{1/2})O_3-0.25BaTiO_3$ is having low and ${\varepsilon}^{\prime}$ and ${\varepsilon}^{{\prime}{\prime}}$ a low $T_{CC}$ (< 5%) in the working temperature range (up to+$100^{\circ}C$) which makes this composition suitable for capacitor application and may be designated as 'Stable Low-K' Class I material as per the specifications of the Electronic Industries Association. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in the system. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compounds.

Analysis of Beam-column Joints in a Structure using Strut Members and Composite Section (스트럿 부재와 융합단면을 이용한 기둥-보 강결 구조물 해석)

  • Cho, Jae-Hyeung;Song, Jae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.289-299
    • /
    • 2020
  • The composition of convergence cross-section of the material is a technique that provides reasonable design and construction of structures. It is frequently used in medium-sized bridges and architectural structures. However, the structural behavioral spare capacity enhancement of the structure by the application of the convergence cross-section is still limited by the expandability due to the limiting state of each material. In order to overcome these limitations, this study reasonably analyzed the construction stages before and after the convergence cross-section constructed and developed a technique for forming multi-point boundary conditions using struts, which are compression members. Based on the existing cases, a reasonable construction step for forming the material composite section of the entire structural system of the structure was derived, and a numerical analysis model for a specific part was constructed to analyze the behavior of the strut application. As a result of this study, the effect of reducing the sectional force of 7.40% in beam-column joint and 6.31% in the center of girder was derived, and the deflection, which is a measure of the serviceability of the structure, improved by 54.41% from the installation and dismantling of strut members at each construction stage.

Structural Characteristics of Immunostimulating Polysaccharides from Lentinus edodes

  • Lee, Hee-Hwan;Lee, Jong-Seok;Cho, Jae-Yeol;Kim, Young-Eon;Hong, Eock-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.455-461
    • /
    • 2009
  • There is a significant amount of experimental evidence suggesting that polysaccharides from mushrooms enhance the host immune system by activating various mechanisms in immune cells, including macrophages. In this study, polysaccharides from Lentinus edodes were found to stimulate the functional activation of macrophages to secrete inflammatory mediators and cytokines and increase the phagocytotic uptake. The chemical properties of the stimulatory polysaccharides, CPFN-G-I, CPBN-G, and CPBA-G, were determined based on their monosaccharide composition, which mainly consisted of glucose and mannose. According to FT-IR and GC/MS, the structure of CPFN-G-I, purified from the fruiting body of L. edodes, was found to consist of a $\beta$-1,6-branched-$\beta$-1,4-glucan, whereas CPBN-G and CPBA-G, purified from the liquid culture broth, were found to be composed of a heteromannan. The configuration of the p-linkage and triple helical conformation of each polysaccharide were confirmed using a Fungi-Fluor kit and Congo red, respectively.

A Study on the Constructability of Modular Steel Frame (해체.조립식 모듈러 철골조 건물의 시공성에 관한 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • The object of this paper is to evaluate on constructability of modular steel frame with the hollow structural steel section to LEB C-shape. A modular building is built with factory-manufacture and site-construction. The advantage of a Modular building presents that enhanced building quality, shortened construction period and easy at an expansion and enlargement for buildings but also has demerits such as size restriction of the modular units according to the Road Traffic Law and Inflexibility of the unit composition. So in this study we use light-weighted structure members with bolted joint for easy Knock-down and traffic, also we evaluated the constructability of this bolted joints type modular buildings.

  • PDF

A Study on the Compressive Strength Properties of the Ternary Blended Non-Cement Concrete using Ternary Diagram (삼각조성도를 통한 3성분계 무시멘트 콘크리트의 압축강도 특성 연구)

  • Jung, Yu-Jin;Kim, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.41-49
    • /
    • 2020
  • To improve the problem of strength reduction of unary and binary blended non-cement concrete that occur at room temperature, comparative analysis was conducted based on the slump and compressive strength properties of ternary blended non-cement concrete in which cement was replaced with silica fume, fly ash, and blast furnace slag, and the following conclusions were drawn. The ternary blended non-cement concrete showed higher compressive strength than binary binder concrete, and the slump reduction was less when 10% silica fume was mixed. In addition, the appropriate composition ratio range of each by-product was suggested according to slump and compressive strength level based on ternary diagram.

A Study on properties of Lower Electrode thin films solar cell for Mo thin film (박막태양전지 하부전극용 Mo 박막특성 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.321-322
    • /
    • 2007
  • In order to increase the cost effectiveness of solar cells, module production should be treated more comprehensively. Back contact cells offer distinct advantage in the interconnection of cells to modules. Thereby Mo thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the Mo were vapor-deposited in the named order. Among them, Mo were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC power was controlled so that the composition of Mo, while the surface temperature having an effect on the quality of the thin film was changed from R.T$[^{\circ}C]$ to $200[^{\circ}C]$ at intervals of $50[^{\circ}C]$. Micro-structural studies were carried out by XRD (D/MAX-1200, Rigaku Co.) and SEM (JSM-5400, Jeol Co.). Electrical properties were measured by CMT-SR3000 Measurement System.

  • PDF