DOI QR코드

DOI QR Code

Effect of stress-strain curve changing with equal channel angular pressing on ultimate strength of ship hull stiffened panels

  • Sekban, Dursun Murat (Department of Marine Engineering Operations, Karadeniz Technical University) ;
  • Olmez, Hasan (Department of Marine Engineering Operations, Karadeniz Technical University)
  • Received : 2020.04.15
  • Accepted : 2021.04.06
  • Published : 2021.05.25

Abstract

Similar to other structures, ultimate strength values showing the maximum load that the structure can resist without damaging has great importance on ships. Therefore, increasing the ultimate strength values will be an important benefit for the structure. Low carbon steels used in ships due to their low cost and good weldability. Improving the ultimate strength values without interfering with the chemical composition to prevent of the weldability properties of these steels would be very beneficial for ships. Grain refinement via severe plastic deformation (SPD) is an essential strengthening mechanism without changing the chemical composition of metallic materials. Among SPD methods, equal channel angular pressing (ECAP) is one of the most commonly used one due to its capacity for achieving bulk ultrafine-grained (UFG) materials. When the literature is examined, it is seen that there is no study about ultimate strength calculation in ships after ECAP. Therefore, the mean purpose of this study is to apply ECAP to a shipbuilding low carbon steel to be able to achieve mechanical properties and investigate the alteration of ship hull girder grillage system's ultimate strength via finite element analysis approach. A fine-grained (FG) microstructure with a mean grain size of 6 ㎛ (initial grain size was 25 ㎛) was after ECAP. This microstructural evolution brought about a considerable increase in strength values. Both yield and tensile strength values increased from 280 MPa and 425 MPa to about 420 MPa and 785 MPa, respectively. This improvement in the strength values reflected a finite element method to determine the ultimate strength of ship hull girder grillage system. As a result of calculations, it was reached significantly higher ultimate strength values (237,876 MPa) compared the non-processed situation (192,986 MPa) on ship hull girder grillage system.

Keywords

Acknowledgement

We would like to thank Dr. Gencaga Purcek for providing the laboratory facilities that allow the experiment to be carried out.

References

  1. Chen, Q., Zimmerman, T.J.E. and DeGeer, D.D. (1997), "Strength and stability testing of stiffened plate components", Ship Structure Committee.
  2. Cheng, J., Elwi, A., Grodin, G. and Kulak, G. (1996), "Material testing and residual stress measurements in a stiffened steel plate", Strength and Stability of Stiffened Plate Components, SSC-339 Ship Sturucture Committee, Washington DC, USA.
  3. Demirtas, M., Kawasaki, M., Yanar, H. and Purcek, G. (2018), "High temperature superplasticity and deformation behavior of naturally aged Zn-Al alloys with different phase compositions", Mater. Sci. Eng.: A, 730, 73-83. https://doi.org/10.1016/j.msea.2018.05.104.
  4. Demirtas, M., Purcek, G., Yanar, H., Zhang, Z.J. and Zhang, Z.F. (2015), "Effect of equal-channel angular pressing on room temperature superplasticity of quasi-single phase Zn-0.3Al alloy", Mater. Sci. Eng.: A, 644, 17-24. https://doi.org/10.1016/j.msea.2015.07.041.
  5. Dobatkin, S.V., Skrotzki, W., Rybalchenko, O.V., Terent'ev, V.F., Belyakov, A.N., Prosvirnin, D.V., ... & Zolotarev, E.V. (2018), "Structural changes in metastable austenitic steel during equal channel angular pressing and subsequent cyclic deformation", Mater. Sci. Eng.: A, 723, 141-147. https://doi.org/10.1016/j.msea.2018.03.018.
  6. Ebrahimi, M., Attarilar, S., Shaeri, M.H., Gode, C., Armoon, H. and Djavanroodi, F. (2019), "An investigation into the effect of alloying elements on corrosion behavior of severely deformed Cu-Sn alloys by equal channel angular pressing", Arch. Civil Mech. Eng., 19(3), 842-850. https://doi.org/10.1016/j.acme.2019.03.009.
  7. Estefen, S.F., Chujutalli, J.H. and Guedes Soares, C. (2016), "Influence of geometric imperfections on the ultimate strength of the double bottom of a Suezmax tanker", Eng. Struct., 127, 287-303. https://doi.org/10.1016/j.engstruct.2016.08.036.
  8. Grondin, G.Y., Chen, Q., Elwi, A.E. and Cheng, J.J. (1998), "Stiffened steel plates under compression and bending", J. Constr. Steel Res., 45(2), 125-148. https://doi.org/10.1016/S0143-974X(97)00058-8.
  9. Grondin, G.Y., Elwi, A.E. and Cheng, J.J.R. (1999), "Buckling of stiffened steel plates-a parametric study", J. Constr. Steel Res., 50(2), 151-175. https://doi.org/10.1016/S0143-974X(98)00242-9.
  10. Horikiri, G., Kitazumi, T., Natori, K. and Tanaka, T. (2017), "Improvement in mechanical properties of semi-solid AA7075 aluminum alloys by Equal-channel angular pressing", Procedia Eng., 207, 1451-1456. https://doi.org/10.1016/j.proeng.2017.10.912.
  11. Islamgaliev, R.K., Nikitina, M.A., Ganeev, A.V. and Sitdikov, V.D. (2019), "Strengthening mechanisms in ultrafine-grained ferritic/martensitic steel produced by equal channel angular pressing", Mater. Sci. Eng.: A, 744, 163-170. https://doi.org/10.1016/j.msea.2018.11.141.
  12. ISSC (2012), "Ultimate strength (Committee III.1)", The 18th International Ship and Offshore Structures Congress (ISSC 2012), Rostock, Germany, September.
  13. Khan, I. and Zhang, S. (2011), "Effects of welding-induced residual stress on ultimate strength of plates and stiffened panels", Ship. Offshore Struct., 6(4), 297-309. https://doi.org/10.1080/17445301003776209.
  14. Khedmati, M.R., Memarian, H.R., Fadavie, M. and Zareei, M.R. (2015), "Ultimate strength of continuous stiffened aluminium plates under combined biaxial compression and lateral pressure", Lat. Am. J. Solid. Struct., 12, 1698-1720. https://doi.org/10.1590/1679-78251516.
  15. Kim, D.K., Lim, H.L., Kim, M.S., Hwang, O.J. and Park, K.S. (2017), "An empirical formulation for predicting the ultimate strength of stiffened panels subjected to longitudinal compression", Ocean Eng., 140, 270-280. https://doi.org/10.1016/j.oceaneng.2017.05.031.
  16. Kim, D.K., Park, D.K., Kima, J.H., Kimb, S.J., Kim, B.J., Seoc, J.K. and Paikd, J.K. (2012), "Effect of corrosion on the ultimate strength of double hull oil tankers-Part I: stiffened panels", Struct. Eng. Mech., 42(4), 507-530. https://doi.org/10.12989/sem.2012.42.4.507.
  17. Kim, D.K., Park, D.K., Park, D.H., Kim, H.B., Kim, B.J., Seo, J.K. and Paik, J.K. (2012), "Effect of corrosion on the ultimate strength of double hull oil tankers-Part II: hull girders", Struct. Eng. Mech., 42(4), 531-549. https://doi.org/10.12989/sem.2012.42.4.531.
  18. Kim, D.K., Poh, B.Y., Lee, J.R. and Paik, J. (2018), "Ultimate strength of initially deflected plate under longitudinal compression: Part I: An advanced empirical formulation", Struct. Eng. Mech., 68(2), 247-259. https://doi.org/10.12989/sem.2018.68.2.247.
  19. Kim, D.K., Yu, S.Y., Lim, H.L. and Cho, N.K. (2020), "Ultimate compressive strength of stiffened panel: An empirical formulation for flat-bar type", J. Marine Sci. Eng., 8, 605. https://doi.org/10.3390/jmse8080605.
  20. Kim, D.K., Yub, S.Y. and Choi, H.S. (2013), "Condition assessment of raking damaged bulk carriers under vertical bending moments", Struct. Eng. Mech., 46(5), 629-644. https://doi.org/10.12989/sem.2013.46.5.629.
  21. Kim, W.J., Chung, C.S., Ma, D.S., Hong, S.I. and Kim, H.K. (2003), "Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging", Scripta Materialia, 49(4), 333-338. https://doi.org/10.1016/S1359-6462(03)00260-4.
  22. Kmiecik, M. (1970), "The load carrying capacity of axially loaded longitudinally stiffened plates having initial deformation", SFI Report R-80. Trondheim.
  23. Kmiecik, M. (1971), Behaviour of Axially Loaded Simply Supported Long Rectangular Plates Having Initial Deformations, Vol. 84.
  24. Langdon, T.G. (2007), "The principles of grain refinement in equal-channel angular pressing", Mater. Sci. Eng.: A, 462(1), 3-11. https://doi.org/10.1016/j.msea.2006.02.473.
  25. Li, Y., Pang Ng, H., Jung, H.D., Kim, H.E. and Estrin, Y. (2014), "Enhancement of mechanical properties of grade 4 titanium by equal channel angular pressing with billet encapsulation", Mater. Lett., 114, 144-147. https://doi.org/10.1016/j.matlet.2013.09.118.
  26. Lin, Y.T. (1985), "Structural longitudinal ship modelling", Ph.D. Dessertation, Department of Naval Architecture and Ocean Engineering, University of Glasgow, Scotland, UK.
  27. Maier, G.G., Astafurova, E.G., Maier, H.J., Naydenkin, E.V., Raab, G.I., Odessky, P.D. and Dobatkin, S.V. (2013), "Annealing behavior of ultrafine grained structure in lowcarbon steel produced by equal channel angular pressing", Mater. Sci. Eng.: A, 581, 104-107. https://doi.org/10.1016/j.msea.2013.05.075.
  28. Murray, N.W. (1984), Introduction to the Theory of Thin-walled Structures, Clarendon Press, Oxford University Press, New York, N.Y., USA.
  29. Ohga, M., Takaue, A., Shigematsu, T. and Hara, T. (2001), "Effects of initial imperfections on nonlinear behaviors of thin-walled members", Struct. Eng. Mech., 11(5), 519-534. https://doi.org/10.12989/sem.2001.11.5.519.
  30. Paik, J.K. and Seo, J.K. (2009), "Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part I: Plate elements", Thin Wall. Struct., 47(8-9), 1008-1017. https://doi.org/10.1016/j.tws.2008.08.005.
  31. Paik, J.K. and Thayamballi, A.K. (2002), Ultimate Limit State Design of Steel Plated Structures, John Wiley&Sons, London.
  32. Paik, J.K., Thayamballi, A.K. (1997), "An empirical formulation for predicting the ultimate compressive strength of stiffened panels", The 7th International Offshore and Polar Engineering Conference, Honolulu, USA, May.
  33. Pan, J., Li, N., Song, Z.J. and Xu, M.C. (2019), "Influence of boundary condition and stiffener type on collapse behaviours of stiffened panels under longitudinal compression", Adv. Mech. Eng., 11(10), 1687814019884762. https://doi.org/10.1177/1687814019884762.
  34. Park, D.K., Paik, J.K., Kim, B.J., Seo, J.K., Li, C.G. and Kim, D.K. (2014), "Ultimate strength performance of Northern Sea going non-ice class commercial ships", Struct. Eng. Mech., 52(3), 613-632. https://doi.org/10.12989/sem.2014.52.3.613.
  35. Raab, G.J., Valiev, R.Z., Lowe, T.C. and Zhu, Y.T. (2004), "Continuous processing of ultrafine grained Al by ECAP-Conform", Mater. Sci. Eng.: A, 382(1), 30-34. https://doi.org/10.1016/j.msea.2004.04.021.
  36. Saray, O., Purcek, G., Karaman, I., Neindorf, T. and Maier, H.J. (2011), "Equal-channel angular sheet extrusion of interstitial-free (IF) steel: Microstructural evolution and mechanical properties", Mater. Sci. Eng.: A, 528(21), 6573-6583. https://doi.org/10.1016/j.msea.2011.05.014.
  37. Shaeri, M.H., Shaeri, M., Salehi, M.T., Seyyedein, S.H. and Abutalebi, M.R. (2015), "Effect of equal channel angular pressing on aging treatment of Al-7075 alloy", Prog. Nat. Sci.: Mater. Int., 25(2), 159-168. https://doi.org/10.1016/j.pnsc.2015.03.005.
  38. Shen, H.X. (2012), "Ultimate capacity of welded box section columns with slender plate elements", Steel Compos. Struct., 13(1), 15-33. https://doi.org/10.12989/scs.2012.13.1.015.
  39. Smirnov, I. and Konstantinov, A. (2018), "Influence of ultrafine-grained structure produced by equal-channel angular pressing on the dynamic response of pure copper", Procedia Struct. Integ., 13, 1336-1341. https://doi.org/10.1016/j.prostr.2018.12.280.
  40. Smith, C., Davidson, P. and Chapman, J. (1988), "Strength and stiffness of ship's plating under in-plane compression and tension", Royal Institution of Naval Architects Transactions, 130.
  41. Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C. and Valiev, R.Z. (2001), "Influence of ECAP routes on the microstructure and properties of pure Ti", Mater. Sci. Eng.: A, 299(1), 59-67. https://doi.org/10.1016/S0921-5093(00)01411-8.
  42. Suresh, M., Sharma, A., More, A. M., Kalsar, R., Bisht, A., Nayan, N. and Suwas, S. (2019), "Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al-Cu-Li alloy AA2195", J. Alloy. Compound., 785, 972-983. https://doi.org/10.1016/j.jallcom.2019.01.161.
  43. Tekgoz, M., Garbatov, Y. and Guedes Soares, C. (2015), "Ultimate strength assessment of welded stiffened plates", Eng. Struct., 84, 325-339. https://doi.org/10.1016/j.engstruct.2014.12.001.
  44. Valiev, R.Z. and Alexandrov, I.V. (1999), "Nanostructured materials from severe plastic deformation", Nanostruct. Mater., 12(1), 35-40. https://doi.org/10.1016/S0965-9773(99)00061-6.
  45. Valiev, R.Z. and Langdon, T.G. (2006), "Principles of equal-channel angular pressing as a processing tool for grain refinement", Prog. Mater. Sci., 51(7), 881-981. https://doi.org/10.1016/j.pmatsci.2006.02.003.
  46. Xu, M.C., Song, Z.J., Pan, J. and Soares, C.G. (2017), "Ultimate strength assessment of continuous stiffened panels under combined longitudinal compressive load and lateral pressure", Ocean Eng., 139, 39-53. https://doi.org/10.1016/j.oceaneng.2017.04.042.
  47. Xu, M.C., Song, Z.J., Zhang, B.W. and Pan, J. (2018), "Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads", Ocean Eng., 162, 161-175. https://doi.org/10.1016/j.oceaneng.2018.05.015.
  48. Xu, M.C., Yanagihara, D., Fujikubo, M. and Guedes Soares, C. (2013), "Influence of boundary conditions on the collapse behaviour of stiffened panels under combined loads", Marine Struct., 34, 205-225. https://doi.org/10.1016/j.marstruc.2013.09.002.
  49. Yanxia, G., Aibin, M., Jinghua, J. and Dan, S. (2017), "Research progress of ultrafine-grained pure titanium produced by equal-channel angular pressing", Rare Metal Mater. Eng., 46(12), 3639-3644. https://doi.org/10.1016/S1875-5372(18)30050-X.
  50. Yao, T., Fujikubo, M. and Yanagihara, D. (1998), "On loading and boundary conditions for buckling/plastic collapse analysis of continuous stiffened plate by FEM", Proceedings of the 12th Asian Technical Exchange and Advisory Meeting on Marine Structures, TEAM'98.
  51. Yao, T., Masahiko, F., Daisuke, Y., Balu, V. and Osamu, N. (1998), "Influence of welding imperfections on buckling/ultimate strength of ship bottom plating subjected to combined bi-axial thrust & lateral pressure", Thin Wall. Struct. Ocean Eng., 5, 245-252.
  52. Zhang, S.M. and Khan, I. (2009), "Buckling and ultimate capability of plates and stiffened panels in axial compression", Marine Struct., 22(4), 791-808. https://doi.org/10.1016/j.marstruc.2009.09.001.
  53. Zhu, Y.T. and Lowe, T.C. (2000), "Observations and issues on mechanisms of grain refinement during ECAP process", Mater. Sci. Eng.: A, 291(1), 46-53. https://doi.org/10.1016/S0921-5093(00)00978-3.