• 제목/요약/키워드: Composites materials

검색결과 4,784건 처리시간 0.03초

셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식 (Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method)

  • 이원오;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

탄소 보강 전도성 고분자 복합재료의 제조 및 특성 평가 (Fabrication and Characterization of graphite reinforced conductive polymer composites)

  • 허성일;윤진철;정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2004
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder (conductive filler) was mixed with an epoxy resin to impart electrical property in composites. The ratio of graphite powder was varied to investigate electrical property of cured conductive composites. In this study, graphite filled conductive polymer composites with high filler loadings$(>60wt.\%)$ were manufactured to accomplish high electrical conductivity(> 100S/cm). Graphite powder increase electrical conductivity of composites by direct physical contact between particles. While high filler loadings are needed to attain good electrical property, the composites becomes brittle. So the ratio of filler to epoxy was varied to optimize of cured composites. The optimum molding pressure according to filler was proposed experimentally.

  • PDF

Preparation and Properties Study of $Cu-MoSi_2$ Composites

  • Yi, Xiaoou;Xiong, Weihao;Li, Jian
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.370-371
    • /
    • 2006
  • The particulate strengthened $Cu-MoSi_2$ composites were prepared by a PM process to develop novel copper based composites with reasonable strength, high thermal conductivity and low thermal expansion coefficient. Microstructure of the composites was investigated by SEM; the tensile strength, elongation, thermal conductivity and thermal expansion coefficient (CTE) of the composites were examined. A comparative analysis of mechanical and thermal properties of various Cu-matrix composites currently in use was given and the strengthening mechanisms for the $Cu-MoSi_2$ composites were discussed.

  • PDF

자기-전기(ME) 복합체를 활용한 초미세 자기장 감지 기술 (Sensing of ultra-low magnetic field by magnetoelectric (ME) composites)

  • 황건태;송현석;장종문;류정호;윤운하
    • 세라미스트
    • /
    • 제23권1호
    • /
    • pp.38-53
    • /
    • 2020
  • Magnetoelectric (ME) composites composed of magnetostrictive and piezoelectric materials derive interfacial coupling of magnetoelectric conversion between magnetic and electric properties, thus enabling to detect ultra-low magnetic field. To improve the performance of ME composite sensors, various research teams have explored adopting highly efficient magnetostrictive and piezoelectric phases, tailoring of device geometry/structure, and developing signal process technique. As a result, latest ME composites have achieved not only outstanding ME conversion coefficient but also sensing of ultra-low magnetic field below 1pT. This article reviews the recent research trend of ME composites for sensing of ultra-low magnetic field.

양극산화 처리된 탄소섬유 강화 복합재료의 기계적 계면물성 (Mechanical Interfacial Properties of Anodically Oxidized Carbon Fibers-reinforced Composites)

  • Park, Soo-Jin;Oh, Jin-Seok;Lee, Jae-Rock
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.188-191
    • /
    • 2003
  • In this wort. the effect of anodic oxidation on surface characteristics of high strength PAN-based carbon fibers is investigated in terms of surface and mechanical interfacial properties of the composites. As a result, the acidity of carbon fiber surfaces is increased, due to the development of oxygen functional groups in the presence of anodic oxidation. Also. it is found that the critical stress intensity factor ($K_{IC}$) is improved in the oxidized fibers-reinforced composites. which can be attributed to the good wettability between fibers and epoxy resin matrix.

  • PDF

화학침착법과 고분자함침 열분해법의 복합공정으로 제조한 SiCf/SiC 복합체의 제조 공정에 따른 파괴거동 (Fracture Behaviors of SiCf/SiC Composites Prepared by Hybrid Processes of CVI and PIP)

  • 박지연;한장원;김대종;김원주;이세훈
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.430-434
    • /
    • 2014
  • $SiC_f$/SiC composites were prepared using the hybrid process of chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP). Before the application of PIP, partially matrix-filled preform composites with different densities were fabricated by control of chemical vapor infiltration time and temperature. The changes of the final density of the $SiC_f$/SiC composites had a tendency similar to that of preform composites partially filled by CVI. Composites with lower density after the CVI process had a larger increment of density during the PIP process. Three types of microstructures were observed on the fractured surface of the composite: 1) well pulled-out fibers and lower density, 2) slightly pulled-out fibers and higher density, and 3) only bulk SiC. The different fractions and distributions of the microstructures could have an effect on the mechanical properties of the composites. In this study, $SiC_f$/SiC composites prepared using a hybrid process of CVI and PIP had density values in the range of $1.05{\sim}1.44g/cm^3$, tensile strength values in the range of 76.4 ~ 130.7 MPa, and fracture toughness values in the range of $11.2{\sim}13.5MPa{\cdot}m^{1/2}$.

압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구 (Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method)

  • 황희윤
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

용탕가압침투법에 의한 알루미늄 보레이트 강화 Mg-3Al-2Ag-1Zn 금속복합재료의 물성 (Material Properties of Squeeze Infiltrated Al Borate Whisker Reinforced Mg-3A1-2Ag-1Zn Matrix Composites)

  • 강호준;배건희;박용하;한상호;박용호;조경목;박익민
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.791-795
    • /
    • 2005
  • In this study, aluminum borate whisker reinforced Mg-3Al-2Ag-1Zn matrix composites were fabricated by the squeeze infiltration technique. The purpose is to develop materials for elevated temperature applications. Microstructure observation revealed successful fabrication of the metal matrix composites, namely no cast defects such as porosity and matrix/reinforcement interface delamination etc. High temperature hardness and creep rupture properties were improved significantly with addition of Ag to the Al borate whisker reinforced Mg alloy composite. $Mg_3Ag$ phase formed during aging heat treatment could improve creep properties of the Mg matrix composites.

Advanced 'green' composites

  • Netravali, Anil N.;Huang, Xiaosong;Mizuta, Kazuhiro
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.269-282
    • /
    • 2007
  • Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

수성 알루미나/탄화규소 슬러리의 동결주조와 층상복합체의 제조: (II) 층상 복합체의 미세구조와 기계적 성질 (Freeze Casting of Aqueous Alumina/Silicon Carbide Slurries and Fabrication of Layered Composites: (II) Microstructure and Mechanical Properties of Layered Composites)

  • 양태영;조용기;김영우;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.105-111
    • /
    • 2008
  • Symmetric three layer composites have been prepared by freeze casting and then pressureless sintered at $l700-1800^{\circ}C$ in $N_2$ gas atmosphere. The relative sintered density of multilayer composites having microstructural characteristics of later intermediate-stage densification increased with sintering temperature and reached about 95% theoretical value at $1800^{\circ}C$. Although the indentation strength of the multilayer composites was generally reduced with increasing Vickers indentation load up to 294N, the damage resistance of multilayer composites was superior compared to monolithic layer 95AL/5SN material. The three-point bend strength of the layered materials remained at the values 266-298 MPa after indentation with a load of 49N, while that of the monolithic 95AL/5SN material was 219 MPa. The fracture toughness of the multilayer material was $5.4-6.6\;MPa\;m^{1/2}$.