• Title/Summary/Keyword: Composites materials

Search Result 4,784, Processing Time 0.025 seconds

Advances in liquid crystalline nano-carbon materials: preparation of nano-carbon based lyotropic liquid crystal and their fabrication of nano-carbon fibers with liquid crystalline spinning

  • Choi, Yong-Mun;Jung, Jin;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Hyeonsu;Ku, Bon-Cheol;Goh, Munju
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.223-232
    • /
    • 2015
  • This review presents current progress in the preparation methods of liquid crystalline nano-carbon materials and the liquid crystalline spinning method for producing nano-carbon fibers. In particular, we focus on the fabrication of liquid crystalline carbon nanotubes by spinning from superacids, and the continuous production of macroscopic fiber from liquid crystalline graphene oxide.

Development of Continuous SiC Fiber Reinforced Magnesium Composites Using Liquid Pressing Process (액상가압성형 공정을 이용한 SiC 연속섬유 강화 마그네슘 복합재료 개발)

  • Cho, Seungchan;Lee, Donghyun;Lee, Young-Hwan;Shin, Sangmin;Ko, Sungmin;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.247-250
    • /
    • 2020
  • In this study, the possibility of manufacturing a magnesium (Mg) composites reinforced with continuous silicon carbide (SiC) fibers was examined using a liquid pressing process. We fabricated uniformly dispersed SiC fiberAZ91 composites using a liquid phase pressing process. Furthermore, the precipitates were controlled through heat treatment. As a continuous Mg2Si phase was formed at the interface between the SiC fiber and the AZ91 matrix alloy, the interfacial bonding strength was improved. The tensile strength at room temperature of the prepared composite was 479 MPa, showing excellent mechanical properties.

Study on the Microstructure and Mechanical Properties of High Volume Fraction TiB2-Al1050 Metal Matrix Composites (고체적률 TiB2-Al1050 금속복합재료의 미세조직 및 기계적 특성 연구)

  • Ko, Seongmin;Park, Hyeonjae;Lee, Yeong-Hwan;Shin, Sangmin;Lee, Donghyun;Jo, Ilguk;Lee, Sang-Bok;Lee, Sang-Kwan;Cho, Seungchan
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, Al1050 composites reinforced with uniformly dispersed, high volume fraction $TiB_2$ particles were fabricated by liquid pressing process and analyzed to microstructure, mechanical properties. Hardness, ultimate tensile strength and compressive yield strength of the 56 vol.% $TiB_2$-Al1050 composite increased to 10, 4.5 and 9.8 times, respectively, compared with those of the Al1050 due to dispersion hardening effect of uniformly dispersed $TiB_2$ in the Al matrix.

Microstructure and Properties of TiC-Inconel 718 Metal Matrix Composites Fabricated by Liquid Pressing Infiltration Process (용융가압함침 공정으로 제조된 고체적률 TiC-Inconel 718 금속복합재료의 미세조직 및 특성)

  • Cho, Seungchan;Lee, Yeong-Hwan;Ko, Seongmin;Park, Hyeonjae;Lee, Donghyun;Shin, Sangmin;Jo, Ilguk;Lee, Sang-Bok;Lee, Sang-Kwan
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.158-162
    • /
    • 2019
  • Titanium carbide (TiC) reinforced Inconel 718 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructure and mechanical properties of the fabricated 55 vol% TiC-Inconel 718 composite are analyzed. The composite exhibits superior mechanical properties, such as hardness and compressive strength as compared with Inconel 718. It is believed that Mo and Nb, which are alloying elements in the matrix, diffuse and solidify into the TiC reinforcement, resulting in generation of core-rim structure with excellent interfacial properties.

Stitching Effect on Flexural and Interlaminar Properties of MWK Textile Composites

  • Byun, Joon-Hyung;Wang, Yi-Qi;Um, Moon-Kwang;Lee, Sang-Kwan;Song, Jung-Il;Kim, Byung-Sun
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.136-141
    • /
    • 2015
  • The stitching process has been widely utilized for the improvement of through-thickness property of the conventional laminated composites. This paper reports the effects of stitching on the flexural and interlaminar shear properties of multi-axial warp knitted (MWK) composites in order to identify the mechanical property improvements. In order to minimize the geometric uncertainties associated with the stacking pattern of fabrics, the regular lay-up was considered in the examination of the stitching effect. The key parameters are as follows: the stitch spacings, the stitching types, the stitching location, and the location of compression fixture nose. These parameters have little effect on the flexural and interlaminar shear properties, except for the case of stitching location. However, the geometry variations caused by the stitching resulted in minor changes to the mechanical properties consistently. Stitching on the $0^{\circ}$ fibers showed the lowest flexural strength and modulus (12% reduction for both properties). The stitch spacing of 5 mm resulted in 8% reduction for the case of interlaminar strength compared with that of 10 mm spacing.

Intra-ply, inter-ply and FG hybrid composites based on basalt and poly-ester fibers: Flexural and impact properties

  • Ehsan Fadayee Fard;Hassan Sharifi;Majid Tehrani;Ehsan Akbari
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • Basalt and poly-ester fibers along with epoxy resin were used to produce inter-ply, intra-ply and functionally gradient hybrid composites. In all of the composites, the relative content of basalt fiber to poly-ester fiber was equal to 50 percent. The flexural and charpy impact properties of the hybrid composites are presented with particular regard to the effects of the hybrid types, stacking sequence of the plies, loading direction and loading speed. The results show that with properly choosing the composition and the stacking sequence of the plies; the inter-ply hybrid composites can achieve better flexural strength and impact absorption energy compared to the intra-ply and functionally gradient composites. The flexural strength and impact absorption energy of the functionally gradient hybrid composites is comparable to, or higher than the intra-ply sample. Also, by increasing the loading speed, the flexural strength increases while the flexural modulus does not have any special trend.

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.