• Title/Summary/Keyword: Composite vessel

Search Result 156, Processing Time 0.024 seconds

KSR-III 복합재 가압탱크의 설계 및 제작

  • Kong, Cheol-Won;Yoon, Chong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.124-132
    • /
    • 2003
  • This paper described the structural design and the fabrication procedure of KSR-III composite pressure tank. The type of the composite pressure tank was COPV(Composite Overwrapped Pressure Vessel). A non-load sharing liner was made of aluminum 6061-0 and the liner provided a helium gas seal. The composite pressure tank was winded using T700 carbon/epoxy on the liner. Because the aluminum liner was thin, multiple cure cycles were applied to the filament winding technique. The multiple cure cycles prevented the liner-cylinder from losing a circular shape. A fitting force at the metallic boss was spread to the carbon fiber by a boss ring. The boss ring also prevented a local deformation at the boss part.

  • PDF

Time History Analysis of Surge Line Considering PVRC Damping (PVRC 감쇠를 고려한 밀림관의 시간이력해석)

  • Kim Tae-Hyung;Jheon Jang-Hwan;Kim Jong-Min;Yoon Ki-Seuk;Kim In-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1025-1032
    • /
    • 2006
  • The PVRC(Pressure Vessel Research Council) damping is for the response spectrum analysis of the piping system. In this study, the possibility to apply it to the time history analysis is evaluated to reduce the higher conservatism for the structural integrity. The evaluation was performed for the surge line connecting the pressurizer to the hot-leg, and the whole mode includes the RCS and the building structures with the surge line. The analyses were performed using ANSYS code. The first modal analysis shows the modes of the surge line are isolated from those of the other structures. The composite modal damping was calculated with PVRC damping for the surge line and RG 1.60 damping for the other structures by using ANSYS routines. Of the calculated composite modal damping values, the composite modal damping values related to the modes of the surge line were replaced with the PVRC damping values with respect to its frequencies. With this replacement, the composite modal damping values of the other structures were not changed. Based on this decouple characteristics, the time history analyses for the seismic events with PVRC damping for the surge line were performed. And the results show the resultant loads can be reduced by up to 50%.

  • PDF

Weight reduction and strengthening of marine hatch covers by using composite materials

  • Tawfik, Basem E.;Leheta, Heba;Elhewy, Ahmed;Elsayed, Tarek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.185-198
    • /
    • 2017
  • The application of composites as an alternative material for marine steel hatch covers is the subject of this study. Two separate approaches are considered; weight reduction approach and strengthening approach. For both approaches Finite Element Analysis (FEA) was performed using ANSYS software. Critical design parameters of the composite hatch cover and FEA are discussed in details. Regarding the weight reduction approach; steel hatch covers of a bulk carrier were replaced by composite covers and a weight reduction of 44.32% was achieved leading to many benefits including fuel saving, Deadweight Increment and lower center of gravity of the vessel. For the strengthening approach; the foremost hatch cover was strengthened to withstand 150% of the load required by IACS for safer navigation while no change in weight was made between the steel and composite covers. Results show that both approaches are feasible and advantageous.

Usefulness of Microscopic Procedures in Composite Grafts for Fingertip Injuries

  • Jo, Dong In;Song, Yu Kwan;Kim, Cheol Keun;Kim, Jin Young;Kim, Soon Heum
    • Archives of Reconstructive Microsurgery
    • /
    • v.26 no.1
    • /
    • pp.9-13
    • /
    • 2017
  • Purpose: Fingertip amputations are the most common type of upper limb amputations. Composite grafting is a simple and cost-effective technique. Although many factors have investigated the success of composite grafting, the success rate is not high. Therefore, this study was conducted to investigate whether the microscopic procedure process during composite grafts improves the success rate. Materials and Methods: Thirteen cases of unreplantable fingertip amputation underwent a microscopic resection procedure for composite graft in the operating room. The principle of the procedure was to remove the least devitalized tissue, maximize the clean tissue preservation and exact trimming of the acral vessel and to remove as many foreign bodies as possible. Results: All fingertips in the thirteen patients survived completely without additional procedures. Conclusion: Composite grafting allows for the preservation of length while avoiding the donor site morbidity of locoregional flaps. Most composite grafts are performed as quickly as possible in a gross environment. However, we take noticed the microscopic resection. This process is thought to increase the survival rate for the following reasons. First, the minimal resection will maximize the junction surface area and increase serum imbibition. Second, sophisticated trimming of injured distal vessels will increase the likelihood of inosculation. Third, accurate foreign body removal will reduce the probability of infection and make it possible to increase the concentration and efficiency in a microscopic environment. Although there is a need for more research into the mechanisms, we recommend using a composite graft under the microscopic environment.

The Effect of Platelet-Rich Plasma on Survival of the Composite Graft and the Proper Time of Injection in a Rabbit Ear Composite Graft Model

  • Choi, Hyun Nam;Han, Yea Sik;Kim, Sin Rak;Kim, Han Kyeol;Kim, Hyun;Park, Jin Hyung
    • Archives of Plastic Surgery
    • /
    • v.41 no.6
    • /
    • pp.647-653
    • /
    • 2014
  • Background Administration of growth factors has been associated with increased viability of composite grafts greater than 1-cm in diameter. Platelet-rich plasma (PRP) contains many of the growth factors studied. In this study, we evaluate the effect of PRP injection on composite graft viability and the proper time for injection. Methods A total of 24 New Zealand White rabbits were divided into four groups. Autologous PRP was injected into the recipient sites three days before grafting in group 1, on the day of grafting in group 2, and three days after grafting in group 3. Group 4 served as control without PRP administration. Auricular composite grafts of 3-cm diameter were harvested and grafted back into place after being rotated 180 degrees. Median graft viability and microvessel density were evaluated at day 21 of graft via macroscopic photographs and immunofluorescent staining, respectively. Results The median graft survival rate was 97.8% in group 1, 69.2% in group 2, 55.7% in group 3, and 40.8% in the control group. The median vessel counts were 34 (per ${\times}200$ HPF) in group 1, 24.5 in group 2, 19.5 in group 3, and 10.5 in the control group. Conclusions This study demonstrates that PRP administration is associated with increased composite graft viability. All experimental groups showed a significantly higher survival rate and microvessel density, compared with the control group. Pre-administration of PRP was followed by the highest graft survival rate and revascularization. PRP treatments are minimally invasive, fast, easily applicable, and inexpensive, and offer a potential clinical pathway to larger composite grafts.

A Study on Evaluation of Harbor VTS Operators' Workload by the Analysis of Marine Traffic (교통량 분석을 통한 항만 VTS 관제사의 업무량 평가)

  • Park, Sung-Yong;Park, Jin-Soo;Kang, Jung-Gu;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.569-576
    • /
    • 2008
  • By the development of international trade in last decades, Korean International Trade has been grown rapidly and Korean Port and Port facilities have been improved stimultaneously: finally volume of the marine traffic increased rapidly. Presently, 15 VTS centers have serving in Korean waters and since the introduction of the first VIS Center in Korea there is no quantitative analysis to find workload of VIS operator. After that Port-MIS and De-brief data have been gathered for 7 days and inbound-outbound vessels time-g/t table prepared and traffic volume examined for each V1S center. Hence $L^2$ conversion traffic volume and dangerous vessel ratio obtained Later on conversion controlled number obtained by denoting ratio 1.0 to directly controlled vessels by VTSO and denoting ratio 0.3 to indirectly controlled vessels by VTSO. Traffic volume, large vessel ratio, dangerous vessel ratio, dimension of VTS controlled area, marine accident occurrence frequency and communication volume of comm. log can be counted as a factor which influence to workload of VTSO. All those factors have been examined and analyzed. Finally, ship's size and dangerous vessel ratio have been chosen to derive the Number of composite conversion control for workload formula.

Experimental Study on the Structural Integrity of Type IV Hydrogen Pressure Vessels Experienced Impact Loadings (충격 하중 조건에서의 Type IV 수소 압력용기 구조건전성 분석)

  • Han, Min-Gu;Jung, Kyung-Chae;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.60-65
    • /
    • 2016
  • In this paper, finite element analysis and real time monitoring experimental work using FBG sensor were carried out for analyzing structural integrity of a Type IV hydrogen pressure vessel under impact loading condition. By using finite element analysis with the ply based modeling technique, sensor insertion points and pressure condition were suggested. Tensile test with an angle ply specimen was conducted for getting the reliability of FBG sensor insertion method. After fabricating the vessel, total five times pressurization fatigue tests were conducted (Non-impact pressurization: 1, After impact pressurization: 4). Experimental results revealed that filling cycle time was gradually increased and filling gradient was decreased when the vessel experienced impact.

The Experimental Study of the End-to-side Microarterial Anastomosis with the Longitudinal Slit and the Triangular Flap (고전적 및 삼각조각 기법을 이용한 단-측면 미세동맥 접합술의 실험적 연구)

  • Lee, Jun-Mo;Lee, Gang-Wook;Lee, Dong-Geun
    • Archives of Reconstructive Microsurgery
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1992
  • Problems of composite tissue transfer commonly arise when a single indispensable recipient vessel receives the graft vssel, and the graft vessel must be sutured in end-to-side fashion so as not todisturb the vascularity of the recipient vessel. The triangular flap in the recipient vessel wall gives an intact endothelial surface when the flow of blood stream is presented and may reduce the chance of anastomosis. We selected mature Wistar rats weighing over 450 grams to compare the conventional longitudinal slit from the triangular flap in the recipient carotid artery over bloood pressure and blood flow when the donor carotid artery was anastomosed in end-to-side fashion. In 30 minutes after anastomosis, maximum blood pressure measured in the donor carotid arterial side when the recipient arterial wall was fasioned with the longitudinal slit was recorded 114 mmHg and with the triangular flap 100mmHg. Minimum blood pressure with the longitudinal slit was 98mmHg and with the triangular flap 88mmHg. The amount of blood collected for 30 seconds in the conventional longitudinal slit was 1.18mg and in the triangular flap 0.78mg. Histology study in 30 minutes, the conventional longitudinal slit demonstrated the more hemorrhagic features around the suture material compared to that of the triangular. flap and, in the 7th day, the conventional longitudinal slit demonstrated the more prominent granulomatous reactions and vascular proliferations around the suture material compared to that of the triangular flap.

  • PDF

Development of Marine Equipment Using New Materials and Fabrication Method (첨단소재 및 성형법을 사용한 조선기자재의 개발)

  • Rocklin R. Farguhar
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.74-86
    • /
    • 2001
  • With the advanced composites technologies and designs advancing faster than ever in the past then years, it has extremely important to keep up with technology by introducing new manu-facturing techniques to advance the industy even more. Specifically, the marine related indus-tries. The United States has preparing for the future by aerospace composite technology to the boat, canoe, kayak and naval vessel busin. This paper will describe one of the methods being implemented to improve quality and structural integrity to compete in the world market.

  • PDF

Optimal design of composite pressure vessel for fuel cell vehicle using genetic algorithm (유전자 알고리즘을 이용한 수소 연료 자동차용 복합재 압력용기의 최적설계)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Chun-Gon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.23-27
    • /
    • 2007
  • To store hydrogen with high pressure is one of key technologies in developing FCVs (fuel cell vehicles). Especially, metal lined composite structure, which is called Type 3, is expected to effectively stand highly pressurized hydrogen since it has high specific strength and stiffness as well as excellent storage ability. However, it has many difficulties to design Type 3 vessels because of their complex geometry, fabrication process variables, etc. In this study, therefore, optimal design of Type 3 vessels was performed in consideration of such actual circumstances using genetic algorithm. Additionally, detailed finite element analysis was followed for the optimal result.

  • PDF