• Title/Summary/Keyword: Composite tubes

Search Result 286, Processing Time 0.022 seconds

Seismic behavior of thin-walled CFST pier-to-base connections with tube confined RC encasement

  • Xuanding Wang;Yue Liao;Jiepeng Liu;Ligui Yang;Xuhong Zhou
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.217-235
    • /
    • 2024
  • Concrete-filled steel tubes (CFSTs) nowadays are widely used as the main parts of momentous structures, and its connection has gained increasing attention as the complexity in configuration and load transfer mechanism. This paper proposes a novel CFST pier-to-footing incorporating tube-confined RC encasement. Such an innovative approach offers several benefits, including expedited on-site assembly, effective confinement, and collision resistance and corrosion resistance. The seismic behavior of such CFST pier-to-footing connection was studied by testing eight specimens under quasi-static cyclic lateral load. In the experimental research, the influences on the seismic behavior and the order of plastic hinge formation were discussed in detail by changing the footing height, axial compression ratio, number and length of anchored bars, and type of confining tube. All the specimens showed sufficient ductility and energy dissipation, without significant strength degradation. There is no obvious failure in the confined footing, while local buckling can be found in the critical section of the pier. It suggests that the footing provides satisfactory strength protection for the connection.

Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells

  • R. Bina;M. Soltani Tehrani;A. Ahmadi;A. Ghanim Taki;R. Akbarian
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.487-499
    • /
    • 2024
  • The primary objective of this study is to analyze the free vibration behavior of a sandwich cylindrical shell with a defective core and wavy carbon nanotube (CNT)-enhanced face sheets, utilizing the three-dimensional theory of elasticity. The intricate equations of motion for the structure are solved semi-analytically using the generalized differential quadrature method. The shell structure consists of a damaged isotropic core and two external face sheets. The distributions of CNTs are either functionally graded (FG) or uniform across the thickness, with their mechanical properties determined through an extended rule of mixture. In this research, the conventional theory regarding the mechanical effectiveness of a matrix embedding finite-length fibers has been enhanced by introducing tube-to-tube random contact. This enhancement explicitly addresses the progressive reduction in the tubes' effective aspect ratio as the filler content increases. The study investigates the influence of a damaged matrix, CNT distribution, volume fraction, aspect ratio, and waviness on the free vibration characteristics of the sandwich cylindrical shell with wavy CNT-reinforced face sheets. Unlike two-dimensional theories such as classical and the first shear deformation plate theories, this inquiry is grounded in the three-dimensional theory of elasticity, which comprehensively accounts for transverse normal deformations.

Strength Characteristics of Hollow Prestressed Concrete Filled Steel Tube Piles for Hybrid Composite Piles (복합말뚝용 중공형 콘크리트 충전 강관말뚝의 강도 특성)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • Hollow prestressed concrete filled steel tube (HCFT) piles, which compose hollow PHC piles inside thin wall steel tubes, are developed. In order to investigate the strength characteristics of HCFT piles, flexural and shear tests were conducted on HCFT piles as well as PHC and steel pipe piles with the same diameter. Results of the test program showed that the flexural strength of HCFT piles was 2.88 and 1.19 times those of ICP and steel pipe piles with thickness of 12 mm, respectively, and its shear strength was 2.40 times that of steel pipe piles. The shear key attached to the inside of thin wall steel tube did not affect the flexural behavior of HCFT piles. It was also observed that the flexural strengths of HCFT piles with diameters of 450 and 500 mm were 35 to 63% higher than the sum of the flexural strengths of its components, respectively, because the strength of concrete in compressive zone increased by confining effect of thin wall steel tube on concrete. HCFT piles used as upper piles in hybrid composite piles might decrease the lateral displacement and increase the structural safety of structures subjected to lateral loads.

Evaluation of P-M Interaction Curve for Circular Concrete-Filled Tube (CFT) Column (원형 콘크리트 충전 강관(CFT) 기둥의 P-M 상관 곡선 평가)

  • Moon, Jiho;Park, Keum-Sung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.355-365
    • /
    • 2014
  • Concrete-filled tubes (CFTs) have been used in civil engineering practices as a column of buildings and a bridge pier. CFTs have several advantages over the conventional reinforced concrete columns, such as rapid construction, enhanced buckling resistance, and inherited confinement effect. However, CFT component have not been widely used in civil engineering practice, since the design provisions among codes significantly vary each other. It leads to conservative design of CFT component. In this study, the design provisions of AISC and EC4 for CFT component were examined, based on the extensive test results conducted by previous researchers and finite element analysis results obtained in this study. Especially, the focus was made on the validation of P-M interaction curves proposed by AISC and EC4. From the results, it was found that the current design codes considerably underestimated the strength of CFT component under general combined axial load and bending. Finally, the modified P-M interaction curve was proposed and successfully verified.

A Simplified Analysis Method of GFRP Composites Deck (GFRP 복합소재 바닥판의 간편해석법)

  • Son, Byung Jik;Ji, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.359-368
    • /
    • 2013
  • This paper presents a simplified analysis method using the elastic equivalent modelling not using the global finite element modelling of deck for the basic design GFRP composites deck with cellular tubes or sandwich structural type. In order to verify the validation of the simplified method ANSYS software package is used and compared the results analyzed on the global finite element modelling and the elastic equivalent modelling. And the laboratory testing by 4-point bending is conducted to compare the results based on the simplified analysis method proposed in this paper. The comparison of the results based on the analysis and the testing are discussed. It is found that the presented simplified analysis is applicable to the use in the basic design GFRP composite deck.

Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams

  • Hosseinpour, Emad;Baharom, Shahrizan;Badaruzzaman, Wan Hamidon W.;Shariati, Mahdi;Jalali, Abdolrahim
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.485-499
    • /
    • 2018
  • In this paper, a hollow steel tube (HST) shear connector is proposed for use in a slim-floor system. The HST welded to a perforated steel beam web and embedded in concrete slab. A total of 10 push-out tests were conducted under static loading to investigate the mechanical behavior of the proposed HST connector. The variables were the shapes (circular, square and rectangular) and sizes of hollow steel tubes, and the compressive strength of the concrete. The failure mode was recorded as: concrete slab compressive failure under the steel tube and concrete tensile splitting failure, where no failure occurred in the HST. Test results show that the square shape HST in filled via concrete strength 40 MPa carried the highest shear load value, showing three times more than the reference specimens. It also recorded less slip behavior, and less compressive failure mode in concrete underneath the square hollow connector in comparison with the circular and rectangular HST connectors in both concrete strengths. The rectangular HST shows a 20% higher shear resistance with a longer width in the load direction in comparison with that in the smaller dimension. The energy absorption capacity values showed 23% and 18% improvements with the square HST rather than a headed shear stud when embedded in concrete strengths of 25 MPa and 40 MPa, respectively. Moreover, an analytical method was proposed and predicts the shear resistance of the HST shear connectors with a standard deviation of 0.14 considering the shape and size of the connectors.

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.

Flexural Behavior of Concrete Filled Seismic Resistant Steel Tubular Columns Subjected to Axial and Cyclic Lateral Load (축력과 반복수평력을 받는 콘크리트 충전 내진 각형강관 기둥의 휨거동 특성)

  • Kim, Byung-Ho;Shim, Hyun-Ju;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.317-326
    • /
    • 2011
  • Today there is a growing range of applications for Concrete-Filled Steel Tube (CFT) member because of its superior performance. Ductility estimation test of concrete-filled seismic resistant steel tubular columns, subjected to axial and cyclic lateral load, was carried out in this study. Seismic resistant steel tubes are manufactured using SN400B plates by a two-seam welding at center of the column width for cold press-formed shape plates of two pieces. A total of eight specimens were manufactured and tested with the parameters of width-thickness ratio of steel tubular column, axial load ratio, and loading conditions to act axial and cyclic lateral load two dynamic actuators were used. From test results, flexural strength, deformation capacity, energy dissipation capacity, and ductility behavior of columns were analyzed.

Bond Behavior of Thin-Walled Rectangular Profiled Steel Sheet Concrete Short Columns (절곡된 단면을 갖는 얇은 판요소 콘크리트 충전 각형강관 기둥의 부착거동)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.233-241
    • /
    • 2005
  • The paper is presented experimental study results on bond stress between profiled steel and concrete in Profiled SPC(Profiled Steel Plate Concrete) rectangular steel tubes through an experimental program in which 13 pull-out specimens were tested. Advantages and class of composite members and current problems of construction work are noted, past research of PSSC is described. An experimental study is described and evaluated. The bond capacity is interrelated with slip at the steel concrete interface. The factors influencing the mechanism of bond stress transfer were the cross section shape, length/diameter, diameter/thickness and environmental parameters (temperature, moisture). The results of experimental program indicated that the force transfer could be characterized into two regions The first region was governed by bond with no relative slip between the profiled steel and concrete. The second region occurs after the chemical debonding. Bond stress transfer in this region was governed by frictional resistance between profiled steel and concrete and cross section shapes. The important factors influencing the magnitude of frictional resistance are the profiled steel shapes, length/diameter and environmental parameters. (temperature, moisture)

Evaluation of the genotoxicity and cytotoxicity in the buccal epithelial cells of patients undergoing orthodontic treatment with three light-cured bonding composites by using micronucleus testing

  • Toy, Ebubekir;Yuksel, Sengul;Ozturk, Firat;Karatas, Orhan Hakki;Yalcin, Muhammet
    • The korean journal of orthodontics
    • /
    • v.44 no.3
    • /
    • pp.128-135
    • /
    • 2014
  • Objective: This study evaluated the cytotoxicity and genotoxicity of fixed orthodontic treatment with three different light-cured orthodontic bonding composites by analyzing micronucleus (MN) formation in the buccal mucosa during a 6-month period. Methods: Thirty healthy volunteers were selected from consecutive patients referred for orthodontic treatment. Equilibrium 2 brackets and molar tubes (Dentaurum) were bonded with three different lightcured orthodontic bonding composites-Transbond XT (3M Unitek), Kurasper F (Kuraray Europe), or GrenGloo (Ormco Corporation)- to all teeth in both arches. Exfoliated buccal epithelial cells were scraped from the middle part of the inner cheeks with sterile cement spatulas before treatment and at 1, 3, and 6 months after treatment. MNs and nuclear alterations, such as karyorrhexis (KR), karyolysis (KL), and binucleated cells (BNs), were scored under a light microscope. Repeated measure ANOVA was used to calculate statistical differences in degenerative nuclear abnormalities. Results: MN rates did not significantly differ among different time points within the same cell type (p > 0.05). In contrast, the number of BNs in buccal epithelial cells significantly increased in all composite groups (p < 0.01, Transbond XT; p < 0.001, Kurasper F and GrenGloo). KL frequency significantly increased between the beginning and end of the study in the Kurasfer F ($0.80{\pm}0.79$ to $1.90{\pm}1.10$; p < 0.05) and GrenGloo ($1.30{\pm}1.06$ to $2.40{\pm}1.08$; p < 0.05) groups. Conclusions: After 6 months of fixed orthodontic treatment with different light-cured composites, morphological signs of cytotoxicity were observed but genotoxic effects were absent.