• Title/Summary/Keyword: Composite tube

Search Result 632, Processing Time 0.023 seconds

A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method (필라멘트 와인딩 공법 GFRP 원형 튜브의 에너지 흡수특성에 관한 연구)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2009
  • In this paper, quasi-static crushing tests of composite circular tubes under axial compression load are conducted to investigate the energy absorption characteristics. Circular tubes used for this experiment are glass/epoxy (GFRP) composite tubes which are fabricated by the filament winding method. One edge of the composite tube is chamfered to reduce the initial peak load and to prevent catastrophic failure during crushing process. Energy absorption characteristics vary significantly according to the constituent materials, fabrication conditions, tube geometry and test condition. In tube geometry, according as inner diameter increase, unstable crush mode is caused by local buckling of delamination, but control of the fiber orientation should help composite tubes get stable crush mode.

Fabrication and Evaluation of 5 vol%CNT/Al Composite Material by a Powder in Sheath Rolling Method (분말시스압연법에 의한 5 vol%CNT/Al 복합재료의 제조 및 평가)

  • Hong, Dongmin;Kim, Woo-Jin;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.607-612
    • /
    • 2013
  • A powder in sheath rolling method was applied to the fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A 6061 aluminum alloy tube with outer diameter of 31 mm and wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powder and CNTs with a volume content of 5% was filled in the tube by tap filling and then processed to an 85% reduction using multi-pass rolling after heating for 0.5 h at $400^{\circ}C$. The specimen was then further processed at $400^{\circ}C$ by multi-pass hot rolling. The specimen was then annealed for 1 h at various temperatures that ranged from 100 to $500^{\circ}C$. The relative density of the 5vol%CNT/Al composite fabricated using powder in sheath rolling increased with increasing of the rolling reduction, becoming about 97% after hot rolling under 96 % total reduction. The relative density of the composite hardly changed regardless of the increasing of the annealing temperature. The average hardness also had only slight dependence on the annealing temperature. However, the tensile strength of the composite containing the 6061 aluminum sheath decreased and the fracture elongation increased with increasing of the annealing temperature. It is concluded that the powder in sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

Effect of axial loading conditions and confinement type on concrete-steel composite behavior

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.95-109
    • /
    • 2020
  • This paper aims to analytically study the effect of loading conditions and confinement type on the mechanical properties of the concrete-steel composite columns under axial compressive loading. The axial loading is applied to the composite columns in the two ways; only on the concrete core, and on the concrete core and steel tube simultaneously, which are called steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns, respectively. In addition, the confinement is investigated in the three types of passive, short-term active and long-term active confinement. Nonlinear finite element 3D models for analyzing these columns are developed using the ABAQUS program, and then these models are verified with respect to the recent experimental results reported by the authors on the STCC and CFST columns experiencing active and passive confinements. Axial and lateral stress-strain curves as well as the failure mode for qualitative verification, and compressive strength for quantitative verification are considered. It is found that there is a good consistency between the finite element analysis results and the experimental ones. In addition, a parametric study is performed to evaluate the effect of axial loading type, prestressing ratio, concrete compressive strength and steel tube diameter-to-wall thickness ratio on the compressive behavior of the composite columns. Finally, the compressive strength results of CFST specimens obtained via the finite element analysis are compared with the values specified by the international codes and standards including EC4, CSA, ACI-318, and AISC, with the results showing that ACI-318 and AISC underestimate the compressive strength of the composite columns, while EC4 and CSA codes present overestimated values.

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF

Torsional response of stiffened circular composite spar (보강된 복합재 원형 스파의 비틀림 거동)

  • Kim, Sung Joon;Lee, Donggeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • To reduce the structural weight, thin-walled circular composite tube has been used as a main spar of high altitude-long endurance unmanned air vehicle(HALE UAV). Predicting the torsional response of stiffened circular spar is complex due to the inhomogeneous nature of section properties, which are dependent on fiber architecture and constituent material properties. The stiffener were placed in the top and bottom sectors of a tube to increase the torsional capabilities such as the rigidity and buckling strength. Numerical simulations were performed to estimate the effect of the stiffener on the torsional capacities. A static experimental test was performed on a stiffened tube, and the test results were compared with a numerical model. The numerical models showed good correlation and demonstrated the ability to predict the torsional capacity. Results presented herein will exhibit the effectiveness of stiffener on torsional strength and stiffness.

Lateral performance of CRCS connections with tube plate

  • Jafari, Rahman;Attari, Nader K.A.;Nikkhoo, Ali;Alizadeh, Saeid
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.37-57
    • /
    • 2019
  • This paper presents experimental and analytical studies to evaluate the cyclic behaviour of Circular Reinforced Concrete column Steel beam (CRCS) connections. Two 3/4-scale CRCS specimens are tested under quasi-static reversed cyclic loading. Specimens were strengthened with a tube plate (TP) and a steel doubler plate (SDP). Furthermore; nine interior beam-through type RCS connections are simulated using nonlinear three-dimensional finite element method using ABAQUS software and are verified with experimental results. The results revealed that using the TP improves the performance of the panel zone by providing better confinement to the concrete. Utilizing the TP at the panel zone may absorb and distribute stress in this region. Results demonstrate that TP can be used instead of SDP. Test records indicate that specimens with TP, with and without SDP maintained their maximum strength up to 4% drift angle, satisfying the recommendation given by AISC341-2016 for composite special moment-resisting frames.

Fabrication of Aluminum Matrix Composite Reinforced with Al0.5CoCrCuFeNi High-Entropy Alloy Particles

  • Min Sang Kim;Han Sol Son;Gyeong Seok Joo;Young Do Kim;Hyun Joo Choi;Se Hoon Kim
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1543-1546
    • /
    • 2022
  • The aluminum composite with dispersed high entropy alloy were developed by stir casting involving the powder-in-tube method. First, Al0.5CoCrCuFeNi high entropy alloy (HEA) powder was made by mechanical alloying, and the powder was extruded in a tube-type aluminum container to form HEA precursor. The extruded HEA precursor was then dispersed in the aluminum matrix via stir casting. As a result, Fe-Cr-Ni based high-entropy phases was uniformly formed in the aluminum matrix, revealing ~158, 166, 235% enhancement of tensile strength by incorporating 1, 3, and 5 wt% HEA particles, respectively.

Nonlinear Analysis of Adhesive Tubular Joints with Composite Adherends subject to Torsion (비틀림 하중을 받는 복합재료 튜브형 접합부의 비선형 해석)

  • Oh Je-Hoon
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.29-36
    • /
    • 2006
  • Since composite materials have anisotropic properties that depend on their stacking angle and sequence, the analysis of joints with isotropic adherends is limited in describing the behavior of the adhesive Joint with composite adherends. In this study, the nonlinear solution for adhesive joints with composite adherends was derived by incorporating the nonlinear behavior of the adhesive into the analysis. The behavior of the laminated composite tube was first analyzed, and the stress distributions of the composite tubular adhesive joint were calculated by including the nonlinear properties of the adhesive. The effect of the stacking sequence of composite adherends and bonding length on torque capacities of joints was examined, and results of the nonlinear analysis were also compared with those of the linear analysis.

Resistance and Flexure Behavior of Slender Welded Built-up Square CFT Column Using Internal Reinforced Steel Tube under Eccentric Loads (강관내부 보강재를 고려한 용접조립 각형 CFT 편심 장주의 내력 및 휨 거동)

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.32-39
    • /
    • 2015
  • So far, square concrete filled tubular(CFT) columns have been used in a limited width thickness ratio. The reason is that local buckling occurs in steel tube easily. Once the local buckling occurs, the confinement effect of steel tube on concrete disappears. In this study, we developed welded built-up square steel tube with reinforcement which are placed at the center of the tube width acts as an anchor. 3 specimens of slender welded built-up square CFT columns and 3 specimens of slender welded built-up square steel tube columns were manufactured with parameters of width(B) of steel tube, width thickness ratio(B/t). we conducted a experimental test on the 6 specimens under eccentric load, and evaluated the structural resistance and behavior of 6 specimens.

Seismic behavior of steel tube reinforced concrete bridge columns

  • Tian, Tian;Qiu, Wen-liang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • This paper reports an experimental study that was accomplished to assess the seismic behavior of steel tube reinforced concrete bridge columns (SBCs). The motivation of this study was to verify a supposition that the core steel tube may be terminated at a rational position in the column to minimize the material cost while maintaining the seismic behavior of this composite column. Four SBC specimens were tested under combined constant axial load and cyclic reversed lateral loads. The unique variable in the test matrix was the core steel tube embedment length, which ranged from 1/3 to 3/3 of the column effective height. It is observed that SBCs showed two distinctly different failure patterns, namely brittle shear failure and ductile flexural failure. Tests results indicate that the hysteretic responses of SBCs were susceptible to the core steel tube embedment length. With the increase of this structural parameter, the lateral strength of SBC was progressively improved; the deformability and ductility, however, exhibited a tendency of first increase and then decrease. It is also found that in addition to maintained the rate of stiffness degradation and cumulative energy dissipation basically unchanged, both the ductility and deformability of SBC were significantly improved when the core steel tube was terminated at the mid-height of the column, and these were the most unexpected benefits accompanied with material cost reduction.