• Title/Summary/Keyword: Composite structure

Search Result 3,419, Processing Time 0.03 seconds

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • 김동현;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.108-111
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16\;{\times}\;8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

Electromagnetic Wave Propagation in Anisotropic Composite Structures (이방성 복합재료의 전자기파 투과특성)

  • 전흥재;신현수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.407-414
    • /
    • 2002
  • The knowledge of interaction of electromagnetic waves in composite structures is important for designing the shielding structure for antenna such as radome. Recently, radomes are constructed in the form of foam core sandwich structures that have many mechanical advantages such as high strength, long fatigue life, low density and adaptability to the intended function of structure. However, the propagation of electromagnetic waves is affected by high anisotropic permeability and loss tangent of the composite skin. In this study, the analytical model to understand the propagation of electromagnetic waves in the anisotropic composites and foam core sandwich structures with composite skins was proposed. Numerical analyses of unidirectional composites and foam core sandwich structure as a function of incident angle were performed. From the results of analysis, the general tendencies of transmittance of electromagnetic wave through composites and foam core sandwich structure were obtained.

  • PDF

Homogeneous Dual Composite Right/Left-Handed Metamaterial Using Subwavelength Defected Ground Structure(DGS) (Subwavelength 결함접지구조(defected grounded structure : DGS)를 이용한 Homogeneous Dual Composite Right/Left-Handed 메타물질 구현)

  • Park, Woo-Young;Lim, Sung-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2242-2246
    • /
    • 2009
  • In this paper, a homogeneous dual composite right/left-handed (D-CRLH) transmission line (TL) is proposed by using a defected ground structure (DGS) on the ground plane. In order to satisfy a homogeneity condition of metamaterial, a subwavelength unit cell is designed by way of a spiral DGS and a meander stub. From a dispersion diagram, it is expected that the frequency bands for the left-handed (LH) property is 3.5 - 4.4 GHz. At 3.8 GHz in the LH band, backward propagating phenomenon is observed from full-wave analysis. The experimental results show that the proposed TL has a stop-band in 1.75 - 3.6 GHz.

Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element

  • Katariya, Pankaj V.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.349-361
    • /
    • 2017
  • The nonlinear thermal buckling load parameter of the laminated composite panel structure is investigated numerically using the higher-order theory including the stretching effect through the thickness and presented in this research article. The large geometrical distortion of the curved panel structure due to the elevated thermal loading is modeled via Green-Lagrange strain field including all of the higher-order terms to achieve the required generality. The desired solutions are obtained numerically using the finite element steps in conjunction with the direct iterative method. The concurrence of the present nonlinear panel model has been established via adequate comparison study with available published data. Finally, the effect of different influential parameters which affect the nonlinear buckling strength of laminated composite structure are examined through numerous numerical examples and discussed in details.

Fire simulation by HRRPUA method for composite material body structure train coach (표면열복사율을 이용한 복합차체 철도차량 화재시뮬레이션)

  • Kim, Woo-Tae;Lee, Duck-Hee;Jung, Woo-Sung;Lee, Chang-Hyun;Woo, Mun-Chun
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.596-601
    • /
    • 2008
  • Larger amount of composite materials are used for light train. These days even the body structure of the coach was made by composite materials. In this study, we made the fire simulation with FDS by HRRPUA method for the passenger coach of carbon-epoxy composite material body structure. For the body structure fire resistance verification, 1.8 liters of gasoline were selected for fire source. For the interior fire case, 4.0 liters of gasoline fire source was selected as Daegu fire accident case.

  • PDF

A Study on the Strength and Failure Mode of Co-cured Composite Joints (동시경화법으로 제조된 복합재료 조인트의 강도 및 파괴모드 연구)

  • Choi, Jin-Ho;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.385-392
    • /
    • 1997
  • The joint design and manufacture of the composite structure have become an important research area because the structural efficiency of the composite structure is often determined by its joint not by its basic structure. The co-cured joint is an efficient joint technique because both curing and jointing for composite structures are achieved simultaneously. In this paper, the torque capacities of the co-cured tubular lap joint with and without knurling of the pyamid type were experimentally measure. From the experimental resuts, it was found that the excess resin played a role as an adhesive in the co-cured tubular lap joint whose steel adherends were not knurled. Also, it was found that the torque capacity of the co-cured joint was increased as the knurling size of the pyramid type on the surface of the steel adherend was increased.

Effect of Thermal Aging on The Strength of Laminate Composites Structure (라미네이트 강도 특성에 미치는 Thermal Aging의 영향)

  • 정연운;김국진;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.24-28
    • /
    • 2002
  • Composite reinforced fiber materials are used in lots of fields such as a part of aeronautic space, ship, machinery and so on because can make structure wished for necessary condition by control fiber direction and laminated sequence. As the use of advanced composites increase, specific techniques have been developed to repair changed composite structures. In order to repair the damaged part production high quality composite reinforced fiber are completed by control the surrounding temperature and press in autoclave. The quality is influenced heat exposure degree by chemical reaction for precessing. This study considerated influence limit of using by repair structure part and change of properties according to heat exposure degree for repairing.

  • PDF

PPF/Adaptive PPF Control of Vortex-induced Vibration of Composite Beam with Rigid Cylinder (PPF/Adaptive PPF 제어기를 이용한 실린더를 부착한 복합재 보의 와류 유발 진동 제어)

  • Chang, Young-Hwan;Kim, Do-Hyung;Yang, Seung-Man;Park, Ki-Yeon;Rew, Keun-Ho;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.147-150
    • /
    • 2002
  • For lightweight and flexible structures, it is important to suppress the vibrations induced by interactions between fluid and structures. This paper presents the PPF/Adaptive control of the vortex-induced vibration of composite beam with rigid cylinder in which the fluid force is considered as an external excitation on the structure. For the problems considered here, the excitation frequency (vortex-shedding frequency) is assumed to be equal to the natural frequency of the structure. A pair of piezoceramic devices attached bottom of the composite structure was used as actuators. Simulation and experiment were carried out with the designed controller and effectiveness of the PPF/Adaptive PPF control was verified by both experimental and simulation results.

  • PDF

Seismic Fragility Analysis of the Structure Considering Composite Modal Damping (복합모드감쇠를 고려한 구조물의 지진취약도분석)

  • 조성국;조양희;박형기;황규호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.200-207
    • /
    • 2001
  • This paper introduces a methodology of seismic fragility analysis and discusses the basic input variables, focusing on the conservatism and variability of reference response spectrum. The procedures to consider the composite modal damping in the seismic fragility analysis is presented and its effects on the seismic capacity of structure is evaluated through an example analysis of the nuclear power plant structure which has typical composite modal damping characteristics. Two seismic fragility analyses were performed to obtain the seismic capacities which evaluated by considering the composite modal damping and the single damping characteristics. The results showed that the seismic fragility analysis without considering the different values of composite modal damping may considerably overestimate the seismic capacity of coupled structures.

  • PDF

Mechanical behaviors of multi-layered foam core sandwich composite (다층 구조 폼 코아 샌드위치 복합재의 기계적 거동 연구)

  • Oh J.O.;Yoon S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.381-382
    • /
    • 2006
  • The mechanical behaviors of multi-layered foam core sandwich composite were investigated through a 3-point bending test. The sandwich specimens were obtained from sandwich panel consisting of aluminum faces and urethane foam core. Three types of sandwich specimens such as a single structure, a double structure and a triple structure were considered. The span of sandwich specimens were varied from 170mm to 350mm. According to the results, the flexural and shear properties of multi-layered sandwich composite were found to be higher than those of single-layered sandwich composite.

  • PDF