• 제목/요약/키워드: Composite steel bridge

검색결과 474건 처리시간 0.021초

특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(I) - 철근 콘크리트 슬래브교 - (Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (I) - Reinforced Concrete Slab Bridge)

  • 김덕현;원치문;이정호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.135-140
    • /
    • 2001
  • A post-tensioned reinforced concrete slab bridge is analyzed by specially orthotropic laminate theory. Symmetrically reinforced slab with tension and compression steel is considered for convenience of analysis. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of the rule of mixture. This bridge is under uniformly distributed vertical loads, and axial loads and end moments due to post-tensioning. In this paper, finite difference method is used for numerical analysis of this bridge. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used for design of new bridges, and maintenance and repair of old bridges.

  • PDF

철도교량 구조형식별 감쇠비 하한값 산정을 위한 시험적 연구 (Experimental Evaluation for Damping Ratio Limit of Railway Bridge according to Structure Types)

  • 민낙기;성덕룡;박용걸
    • 한국철도학회논문집
    • /
    • 제15권2호
    • /
    • pp.154-161
    • /
    • 2012
  • 철도교량 동적 설계 및 동적 안전성을 해석적으로 평가하기 위해서는 교량의 감쇠비를 산정하는 것이 매우 중요하다. 본 연구에서는 국내 고속 및 일반철도에서 일반적으로 사용되고 있는 소수주형강합성교, PSC Box, Steel Box, PSC, IPC, Precom, Preflex에 대하여 실내 모형실험 및 운행 중 현장계측을 하였다. 이러한 고속 및 일반철도의 대표적 교량형식에 대한 실내외 시험을 통해 대수감소율을 적용하여 감쇠비를 분석하였다. 따라서 철도교량의 감쇠비는 하중크기, 가진주파수, 진폭에 영향을 받지 않는 것으로 분석되었다. 또한, 기존 철도설계기준에 제시된 감쇠비 하한치와 비교하여 PSC구조 및 강합성구조 철도교량의 경우 감쇠비 하한값을 1.0%로 적용하는 것이 합리적이라 판단되었다.

Development of automatic system for evaluating the stress redistribution in structural members of a steel cable-stayed bridge due to cable stress relaxation

  • Hong, Tien-Thang;Kim, Jung J.;Thai, Duc-Kien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.753-768
    • /
    • 2022
  • In this study, a graphical automatic system is developed in order to investigate the stress redistribution of structural members in a steel cable-stayed bridge. The generalized Maxwell model is selected for stress relaxation estimation, and it is carefully verified and applied to all the cable members of a steel cable-stayed bridge to investigate its stress relaxation. A set of stress relaxation parameters in all cables is determined using the fmincon optimization function. The stress redistribution of the steel cable-stayed bridge is then analyzed using ABAQUS. To shorten the investigation time, all the aforementioned phases are built up to be an automatic system. The automatic system is then employed to investigate the effect of cable cross-section areas and girder spans on stress redistribution. The findings from these studies show that the initial tension in the cables of a steel cable-stayed bridge should be kept to less than 55% of the cable's ultimate strength to reduce the effect of cable stress relaxation. The cable space in a steel cable-stayed bridge should be limited to 15,000 mm to minimize the effect of cable stress relaxation. In comparison to other structural members of a steel cable-stayed bridge, the girders experience a significant stress redistribution.

Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment

  • Gao, Yanmei;Zhou, Zhixiang;Liu, Dong;Wang, Yinhui
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.981-997
    • /
    • 2016
  • To avoid the cracks of cast-in-place concrete in shear pockets and seams in the traditional composite beam with precast decks, this paper proposed a new type of prefabricated steel truss-concrete composite beam (ab. PSTC beam) with pre-embedded shear studs (ab. PSS connector). To study the initial cracking load of concrete deck, the development and distribution laws of the cracks, 3 PSTC beams were tested under hogging moment. And the crack behavior of the deck was compared with traditional precast composite beam, which was assembled by shear pockets and cast-in-place joints. Results show that: (i) the initial crack appears on the deck, thus avoid the appearance of the cracks in the traditional shear pockets; (ii) the crack of the seam appears later than that of the deck, which verifies the reliability of epoxy cement mortar seam, thus solves the complex structure and easily crack behavior of the traditional cast-in-place joints; (iii) the development and the distribution laws of the cracks in PSTC beam are different from the conventional composite beam. Therefore, in the deduction of crack calculation theory, all the above factors should be considered.

아치형 복부판 보강재가 설치된 플레이트거더 강합성교의 구조적 거동특성 (Structural Characteristics of Steel-Concrete Composite Plate Girder with Arch-Type Web Stiffener)

  • 우상벽;유종호;이홍규;원용석;김선희;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제6권4호
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, we present the result of analytical investigation pertaining to the structural behavior of steel-concrete composite plate girder with arch-type web stiffener. In the arch-type web stiffener located in the compression side of web, infill concrete is cast to strengthen the arch-type stiffener and also to exert resisting force against compression force. This type of composite steel-concrete plate girder bridge is built and is in service. To understand the behavior thoroughly, analytical parametric study was conducted by using the finite element method. As a result it was found that the effect of arch-type stiffener with infill concrete is considerable for the design of such type composite girder bridge.

Diagnostic/prognostic health monitoring system and evaluation of a composite bridge

  • Mosallam, A.;Miraj, R.;Abdi, F.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.397-413
    • /
    • 2009
  • Composite bridges offer many advantages compared to current steel and aluminum bridges. This paper presents the results of a comprehensive on-going research program to develop innovative Diagnostic Prognostic System (DPS) and a structural evaluation of Composite Army Bridge (CAB) system. The DPS is founded on three technologies: optical fiber sensing, remote data transmission, and virtual testing. In developing this system, both laboratory and virtual test were used in different damage scenarios. Health monitoring with DPS entailed comparing live strain data to archived strained data in various bridge locations. For field repairs, a family of composite chords was subjected to simple ramp loads in search of ultimate strength. As such, composite bridge specimens showcased their strengths, heralded the viability of virtual testing, highlighted the efficacy of field repair, and confirmed the merits of health monitoring.

강합성 교량에 설치된 압전소자의 전력발생효과 분석 (Analysis of Electric Power Effect of Piezoelectric Element on Steel-concrete Composite Bridge)

  • 김상효;정치영;정하민;안진희
    • 한국강구조학회 논문집
    • /
    • 제22권5호
    • /
    • pp.411-420
    • /
    • 2010
  • 교량은 주행차량에 의하여 지속적이며 반복적인 변형에너지가 발생하며, 이러한 교량의 변형에너지를 압전소자를 이용하여 전기에너지로 변환 할 수 있다. 하지만 압전소자를 구조물에 부착하여 구조물의 운동에너지를 전기에너지로 변환하여 사용하기 위해서는 구조물에 작용하는 하중 및 하중에 따라 압전소자에서 발생하는 변형률 관계 등이 제시되어야 압전소자를 합리적으로 적용할 수 있는 가능성을 평가할 수 있다. 따라서 본 연구에서는 압전소자를 교량 구조물에 적용하였을 때 발생하는 전압을 평가하기 위하여 강교량을 모사한 강합성 거더 교량 실험체를 제작하고 교량의 하중효과 등을 고려한 하중을 재하하고 이에 따라 압전소자에서 발생되는 전압을 평가하고 압전전압의 제안식과 실험결과를 비교하였다.

Modal parametric changes in a steel bridge with retrofitting

  • Walia, Suresh Kumar;Vinayak, Hemant Kumar;Kumar, Ashok;Parti, Raman
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.385-403
    • /
    • 2015
  • This paper presents the status improvement of an old damaged deck type rural road steel truss bridge through the modal parametric study after partial retrofitting. The dynamic and static tests on bridge were carried out as in damaged state and after partial retrofitting. The dynamic testing on the steel bridge was carried out using accelerometers under similar environmental conditions with same speed of the moving vehicle. The comparison of the modal parameters i.e., frequency, mode shape mode shape curvature, modal strain energy, along with the deflection parameter are studied with respect to structural analytical model parameters. The status up gradation for the upper and downstream truss obtained was different due to differential level of damage in the bridge. Also after retrofitting the structural elemental behavior obtained was not same as desired. The damage level obtained through static tests carried out using total station indicated further retrofitting requirement.

SRC 합성교각의 비탄성거동에 대한 유한요소해석 (Finite Element Analysis of Inelastic Behavior of SRC Composite Piers)

  • 심창수;한정훈;박창규;정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.269-275
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is one of the most important design criteria. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcement such as hoop ties closely. Concrete encased composite columns can be utilized for bridge piers especially in seismic area. In this paper, finite element analyses are performed to study the nonlinear behavior of concrete encased composite columns with single core steel or multiple steel elements under static and quasi-static loads. The cross-sections of these specimens ate composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcement, encased steel member, and loading axis. Through the comparison between FE analyses and test results, adequate material models for confined concrete and unconfined concrete ate investigated. After getting the proper analysis models for composite columns, several parameters are considered to suggest design considerations on the details of composite piers.

  • PDF

Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system

  • Wan, Shi-cheng;Huang, Qiao;Guan, Jian
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.21-35
    • /
    • 2019
  • This study investigates the flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates. An innovative mechanical anchorage system was developed. The components of the system can be easily assembled on site before applying a prestressing force, and removed from the structures after strengthening is completed. A total of seven steel-concrete composite specimens including four simply supported beams strengthened at the positive moment region and three continuous beams strengthened at the negative moment region were tested statically until failure. Experimental results showed that the use of prestressed CFRP plates enhanced the flexural capacity and reduced the mid-span deflection of the beams. Furthermore, by prestressing the CFRP laminates, the material was used more efficiently, and the crack resistance of the continuous composite specimens at the central support was significantly improved after strengthening. Overall, the anchorage system proved to be practical and feasible for the strengthening of steel-concrete composite beams. The theoretical analysis of ultimate bearing capacity is reported, and good agreement between analytical values and experimental results is achieved.