Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.6.753

Development of automatic system for evaluating the stress redistribution in structural members of a steel cable-stayed bridge due to cable stress relaxation  

Hong, Tien-Thang (Department of Civil and Environmental Engineering, Sejong University)
Kim, Jung J. (Department of Civil and Environmental Engineering, Kyungnam University)
Thai, Duc-Kien (Department of Civil and Environmental Engineering, Sejong University)
Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
Publication Information
Steel and Composite Structures / v.44, no.6, 2022 , pp. 753-768 More about this Journal
Abstract
In this study, a graphical automatic system is developed in order to investigate the stress redistribution of structural members in a steel cable-stayed bridge. The generalized Maxwell model is selected for stress relaxation estimation, and it is carefully verified and applied to all the cable members of a steel cable-stayed bridge to investigate its stress relaxation. A set of stress relaxation parameters in all cables is determined using the fmincon optimization function. The stress redistribution of the steel cable-stayed bridge is then analyzed using ABAQUS. To shorten the investigation time, all the aforementioned phases are built up to be an automatic system. The automatic system is then employed to investigate the effect of cable cross-section areas and girder spans on stress redistribution. The findings from these studies show that the initial tension in the cables of a steel cable-stayed bridge should be kept to less than 55% of the cable's ultimate strength to reduce the effect of cable stress relaxation. The cable space in a steel cable-stayed bridge should be limited to 15,000 mm to minimize the effect of cable stress relaxation. In comparison to other structural members of a steel cable-stayed bridge, the girders experience a significant stress redistribution.
Keywords
automated system; cable-stayed bridge; cable stress relaxation; high strength steel cable; long-term deformation;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Kmet, S. and L.H. (2004), "Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope-examples and parametrical study", Struct. Eng. Mech., 18(5) (An international journal), 591-607.   DOI
2 Nicholas, W.T. (2012), THE PHENOMENOLOGICAL THEORY OF LINEAR VISCOELASTIC BEHAVIOR: AN INTRODUCTION. Springer Science & Business Media, Berlin, German.
3 Wang, X., Chen, Z., Liu, H. and Yu, Y. (2018), "Experimental study on stress relaxation properties of structural cables", Constr. Build. Mater., 175, 777-789. https://doi.org/10.1016/j.conbuildmat.2018.04.224.   DOI
4 Wang, X., Chen, Z., Yu, Y. and Liu, H. (2017), "An innovative approach for numerical simulation of stress relaxation of structural cables", Int. J. Mech. Sci., 131-132(May), 971-981. https://doi.org/10.1016/j.ijmecsci.2017.08.011.   DOI
5 Yu, Y., Chen, Z. and Chen, A. (2019), "Experimental study of a pretensioned connection for modular buildings", Steel Compos. Struct., 31(3), 217-232. https://doi.org/10.12989/scs.2019.31.3.217.   DOI
6 Zeren, A. and Zeren, M. (2003), "Stress relaxation properties of prestressed steel wires", J. Mater. Process. Technol., 141(1), 86- 92. https://doi.org/10.1016/S0924-0136(03)00131-6.   DOI
7 Zhang, Y., Feng, Q., Wang, G. and Xu, R. (2021), "Analytical model for the bending of parallel wire cables considering interactions among wires", Int. J. Mech. Sci., 194(November 2020). https://doi.org/10.1016/j.ijmecsci.2020.106192.   DOI
8 Song, W.K. and Kim, S.E. (2007), "Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts", Eng. Struct., 29(9), 2133-2142. https://doi.org/10.1016/j.engstruct.2006.11.005.   DOI
9 Zhang, M., He, J., Meng, F. and Gong, X. (2019), "Study on stress relaxation of simple spiral strand subjected to tensile load based on semi-analytical method", Adv. Eng. Softw., 128(August 2018), 34-45. https://doi.org/10.1016/j.advengsoft.2018.11.007.   DOI
10 Zhang, G., Liu, Y., Liu, J., Lan, S. and Yang, J. (2022), "Causes and statistical characteristics of bridge failures: A review", J. Traffic Transp. Eng., 9(3), 388-406. https://doi.org/10.1016/j.jtte.2021.12.003.   DOI
11 Chen, D.L., Yang, P.F. and Lai, Y.S. (2012), A review of threedimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation, Microelectron. Reliab., 52(3), 541-558. https://doi.org/10.1016/j.microrel.2011.10.001.   DOI
12 Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.   DOI
13 Walther, R., Houriet, B., Isler, W., Moia Klein, P. and Francois, J. (1999), CABLE STAYED BRIDGES, Thomas Telford, London, UK.
14 Wan, S.C., Huang, Q. and Guan, J. (2019), "Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system", Steel Compos. Struct., 32(1), 21-35. https://doi.org/10.12989/scs.2019.32.1.021.   DOI
15 Brnic, J., Brcic, M., Krscanski, S., Lanc, D. and Chen, S. (2019), "Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8", Steel Compos. Struct., 31(4), 409-416. https://doi.org/10.12989/scs.2019.31.4.409.   DOI
16 Cesarek, P., Kramar, M. and Kolsek, J. (2018), "Effect of creep on behaviour of steel structural assemblies in fires", Steel Compos. Struct., 29(4), 423-435. https://doi.org/10.12989/scs.2018.29.4.423.   DOI
17 CEB-FIP Model Code 1990 (1993), Design Code, Comite EuroInternational du Beton; London, UK.
18 Cluley, N.C. and Shepherd, R. (1996), "Analysis of concrete cable-stayed bridges for creep, shrinkage and relaxation effects", Comput. Struct., 58(2), 337-350. https://doi.org/10.1016/0045-7949(95)00131-Y.   DOI
19 Atmaca, B. (2021), Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm, Steel Compos. Struct., 40(6), 805-816. https://doi.org/10.12989/scs.2021.40.6.805.   DOI
20 CECS212-2006 (2006), Technical Specification for Prestressed Steel Structures, China Planning Press; Beijing, China.
21 Destrebecq, J.F. and Jurkiewiez, B. (2001), "A numerical method for the analysis of rheologic effects in concrete bridges", Comput. Civ. Infrastruct. Eng., 16(5), 347-364. https://doi.org/10.1111/0885-9507.00238.   DOI
22 ISO 15630-1 (2010), Steel for the Reinforcement and PreStressing of Concrete-Test Methods-part 1: Reinforcing Bars, Wire Rod and Wire. Italian Board of Standardization (UNI).
23 Liu, C.H., Au, F.T.K. and Lee, P.K.K. (2006), "Estimation of shrinkage effects on reinforced concrete podiums", HKIE Trans. Hong Kong Inst. Eng., 13(4), 33-43. https://doi.org/10.1080/1023697X.2006.10668059.   DOI
24 Scattarreggia, N., Galik, W., Calvi, P.M., Moratti, M., Orgnoni, A. and Pinho, R. (2022), "Analytical and numerical analysis of the torsional response of the multi-cell deck of a collapsed cablestayed bridge", Eng. Struct., 265(May), 114412. https://doi.org/10.1016/j.engstruct.2022.114412.   DOI
25 Ivanco, V., Kmet, S. and Fedorko, G. (2016), "Finite element simulation of creep of spiral strands", Eng. Struct., 117, 220-238. https://doi.org/10.1016/j.engstruct.2016.02.053.   DOI
26 Conway, T.A. and Costello, G.A. (1993), "Viscoelastic response of a simple strand", Int. J. Solids Struct., 30(4), 553-567. https://doi.org/10.1016/0020-7683(93)90187-C.   DOI
27 GB/T10120-2013 (2013), Metallic Materials-Tensile Stress Relaxation-Method of Test, Beijing, China.
28 Gou, H., Wang, W., Shi, X., Pu, Q. and Kang, R. (2018), "Behavior of steel-concrete composite cable anchorage system", Steel Compos. Struct., 26(1), 115-123. https://doi.org/10.12989/scs.2018.26.1.115.   DOI
29 Atmaca, B., Dede, T. and I,M.G.I.N.S.K. (2020), "Optimization of cables size and prestressing force for a single pylon cablestayed bridge with Jaya algorithm", Steel Compos. Struct., 34(6), 853-862. https://doi.org/10.12989/scs.2020.34.6.853.   DOI
30 Scattarreggia, N., Salomone, R., Moratti, M., Malomo, D., Pinho, R., and Calvi, G.M. (2022), "Collapse analysis of the multi-span reinforced concrete arch bridge of Caprigliola, Italy", Eng. Struct., 251(PA), 113375. https://doi.org/10.1016/j.engstruct.2021.113375.   DOI
31 Sinha, U. and Levinson, D. (1992), "Tensile stress relaxation in high-strength spring steel wire", J. Test. Eval., 20(2), 114-120. https://doi.org/10.1520/JTE11908J.   DOI