• Title/Summary/Keyword: Composite steel bridge

Search Result 481, Processing Time 0.026 seconds

Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone

  • Lin, Zhaofei;Liu, Yuqing;He, Jun
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1369-1389
    • /
    • 2015
  • In order to investigate the behaviour of lying multi-stud connectors in cable-pylon anchorage zone, twenty-four push-out tests are carried out with different stud numbers and diameters. The effect of concrete block width and tensile force on shear strength is investigated using the developed and verified finite element model. The results show that the shear strength of the lying multi-stud connectors is reduced in comparison with the lying single-stud connector. The reduction increases with the increasing of the number of studs in the vertical direction. The influence of the stud number on the strength reduction of the lying multi-stud connectors is decreased under combined shear and tension loads compared with under pure shear. Yet, due to multi-stud effect, they still can't be ignored. The concrete block width has a non-negligible effect on the shear strength of the lying multi-stud connectors and therefore should be chosen properly when designing push-out specimens. No obvious difference is observed between the strength reductions of the studs with 22 mm and 25 mm diameters. The shear strengths obtained from the tests are compared with those predicted by AASHTO LRFD and Eurocode 4. Eurocode 4 generally gives conservative predictions of the shear strength, while AASHTO LRFD overestimates the shear strength. In addition, the lying multi-stud connectors with the diameters of 22 m and 25 mm both exhibit adequate ductility according to Eurocode 4. An expression of load-slip curve is proposed for the lying multi-stud connectors and shows good agreement with the test results.

Experimental Investigations on the Flexural Behavior of One-Way Concrete Slabs Reinforced with GFRP Re-Bar Bundle (유리섬유 보강 플래스틱 Re-Bar 다발로 보강된 1방향 콘크리트 슬래브의 휨거동에 관한 실험적 연구)

  • 윤순종;김병석;유성근;정재호;정상균
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • In recent years, the investigation on the development of fiber reinforced plastic(FRP) Re-Bar has been greatly increased due to the attractive physical and mechanical properties of FRP. The primary reason of such a tendency is in the fact that it does not ordinarily cause durability problems such as those associated with steel reinforcement corrosion. This study is an experimental investigation on the flexural behavior of one-way concrete slabs, which can be used to construct bridge deck, reinforced with GFRP Re-Bar bundle. The tensile tests of GFRP Re-Bar produced by domestic industry and third point bending tests of one-way slab specimens reinforced with GFRP Re-Bar bundle are peformed. For all slab specimens, load-deflection relations are predicted by using the ACI committee 440 and the results are compared with experimental ones. In order to establish the design criteria or guidelines of concrete flexural member reinforced with FRP Re-Bar, it is needed to evaluate the serviceability limit state as well as the strength limit state.

Modeling for fixed-end moments of I-sections with straight haunches under concentrated load

  • Soto, Inocencio Luevanos;Rojas, Arnulfo Luevanos
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.597-610
    • /
    • 2017
  • This paper presents a mathematical model for fixed-end moments of I-sections with straight haunches for the general case (symmetrical and/or non-symmetrical) subjected to a concentrated load localized anywhere on beam taking into account the bending deformations and shear, which is the novelty of this research. The properties of the cross section of the beam vary along its axis "x", i.e., the flange width "b", the flange thickness "t", the web thickness "e" are constant and the height "d" varies along of the beam, this variation is linear type. The compatibility equations and equilibrium are used to solve such problems, and the deformations anywhere of beam are found by the virtual work principle through exact integrations using the software "Derive" to obtain some results. The traditional model takes into account only bending deformations, and others authors present tables considering the bending deformations and shear, but are restricted. A comparison between the traditional model and the proposed model is made to observe differences, and an example of structural analysis of a continuous highway bridge under live load is resolved. Besides the effectiveness and accuracy of the developed models, a significant advantage is that fixed-end moments are calculated for any cross section of the beam "I" using the mathematical formulas.

ZAn Experimental Study on Performance Evaluation of Simplified Composite Steel I-Beam Bridge (초간편 강합성 H형강 교량의 실험 성능평가 고찰)

  • Kim, Jae-Heung;Park, Jong-Sup;Lee, Son-Ho;Choi, Seung-Ho;Lee, Young-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.29-32
    • /
    • 2009
  • 본 연구는 도로교 설계 기준 바탕으로 H-형강을 사용하여 20~30m 사이의 지간장을 가진 중 소규모 교량에 적용이 가능한 초간편 교량의 모형실험 결과와 유한요소해석프로그램(ABAQUS)을 사용한 해석 결과와 비교 분석하여 초간편 교량의 성능을 평가한 것이다. 일반적으로 우리나라의 교량들은 시공과정에서 여러 단계를 거쳐 시공한다. 시공단계가 복잡할수록 공사기간은 늘어나기 때문에 기상 현상에 의한 파괴와 교량의 낙후로 인해 유지, 보수, 교체 또는 교량확장을 해야 하는 경우 교통 혼잡과 경제적 손실을 줄 수 있다. 따라서 본 연구는 이와 같은 경제적 손실을 줄일 수 있는 초간편 H형강 교량의 연구의 일환으로 기존의 연구 결과를 모형실험 수행 결과와 비교하여 최적성능을 평가하기 위해 실시하였다. 사용된 실험체는 실험장소인 건설기술연구소의 구조실험동 장소 여건에 따라 10m 안팎의 경간을 갖는 교량으로 제작하였다. 실험체의 설계 제작 과정에 대해 검토한 후 범용구조해석 프로그램을 이용하여 동일한 조건을 적용한 결과를 비교 후 최종적으로 초간편 교량의 성능에 대한 평가를 실시하여 김재흥 등(2009)의 의해 제안된 하중분배계수 값이 적용가능한지 판단하였고, 실험을 통해 응력 분포와 극한하중에 대해 검토하였다.

  • PDF

Probabilistic sensitivity analysis of suspension bridges to near-fault ground motion

  • Cavdar, Ozlem
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.15-39
    • /
    • 2013
  • The sensitivities of a structural response due to variation of its design parameters are prerequisite in the majority of the algorithms used for fundamental problems in engineering as system uncertainties, identification and probabilistic assessments etc. The paper presents the concept of probabilistic sensitivity of suspension bridges with respect to near-fault ground motion. In near field earthquake ground motions, large amplitude spectral accelerations can occur at long periods where many suspension bridges have significant structural response modes. Two different types of suspension bridges, which are Bosporus and Humber bridges, are selected to investigate the near-fault ground motion effects on suspension bridges random response sensitivity analysis. The modulus of elasticity is selected as random design variable. Strong ground motion records of Kocaeli, Northridge and Erzincan earthquakes are selected for the analyses. The stochastic sensitivity displacements and internal forces are determined by using the stochastic sensitivity finite element method and Monte Carlo simulation method. The stochastic sensitivity displacements and responses obtained from the two different suspension bridges subjected to these near-fault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts stochastic sensitivity responses of suspension bridges. The stochastic sensitivity information provides a deeper insight into the structural design and it can be used as a basis for decision-making.

Improvements to the analysis of floorbeams with additional web cutouts for orthotropic plated decks with closed continuous ribs

  • De Corte, Wouter;Van Bogaert, Philippe
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Additional cutouts in the floorbeam webs of orthotropic plated bridge decks relieve the highly stressed lower flange of the ribs passing through these floorbeam webs from possible fatigue damage. Conversely, the floorbeam webs themselves suffer from high stress concentrations, especially along the free edges of the additional cutouts. These stresses result from a combination of direct introduction of vertical traffic loads in the weakened web and from the truss action of the floorbeam. The latter differs from a simple beam action due to the presence of the openings and corresponds more to the behaviour of a Vierendeel truss. Close assessment of the appearing stresses, highly relevant for fatigue resistance, requires the use of elaborate finite element modelling. However, a full finite element analysis merely provides the results of total stresses, leaving the researcher or designer the difficult task of finding the origin of these stress components. This paper presents a calculation method for cutout stresses based on a combination of a framework analysis and a two dimensional finite element analysis of much smaller parts of the floorbeam. This method provides more insight in the origin of the stress components, as well as it simplifies any comparison of different additional cutout geometries, independent of the floorbeam topology.

Experimental Study on the the Maglev Train Guideway Girder : Composite System with PSC-U Type Girder and Precast Deck (자기부상열차 가이드웨이 거더의 실험적 연구: PSC-U 형 거더와 프리캐스트 바닥판의 합성 시스템)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Yeo, In-Ho;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.46-55
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, longitudinally full-scale guideway girder system was fabricated and static/dynamic test of the girder was performed for the purpose of the performance evaluation.

  • PDF

Size-dependent nonlinear pull-in instability of a bi-directional functionally graded microbeam

  • Rahim Vesal;Ahad Amiri
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.501-513
    • /
    • 2024
  • Two-directional functionally graded materials (2D-FGMs) show extraordinary physical properties which makes them ideal candidates for designing smart micro-switches. Pull-in instability is one of the most critical challenges in the design of electrostatically-actuated microswitches. The present research aims to bridge the gap in the static pull-in instability analysis of microswitches composed of 2D-FGM. Euler-Bernoulli beam theory with geometrical nonlinearity effect (i.e. von-Karman nonlinearity) in conjunction with the modified couple stress theory (MCST) are employed for mathematical formulation. The micro-switch is subjected to electrostatic actuation with fringing field effect and Casimir force. Hamilton's principle is utilized to derive the governing equations of the system and corresponding boundary conditions. Due to the extreme nonlinear coupling of the governing equations and boundary conditions as well as the existence of terms with variable coefficients, it was difficult to solve the obtained equations analytically. Therefore, differential quadrature method (DQM) is hired to discretize the obtained nonlinear coupled equations and non-classical boundary conditions. The result is a system of nonlinear coupled algebraic equations, which are solved via Newton-Raphson method. A parametric study is then implemented for clamped-clamped and cantilever switches to explore the static pull-in response of the system. The influences of the FG indexes in two directions, length scale parameter, and initial gap are discussed in detail.

Development of Non-linear Finite Element Modeling Technique for Circular Concrete-filled Tube (CFT) (원형 콘크리트 충전 강관 (CFT)의 비선형 유한 요소 해석 기법 개발)

  • Moon, Jiho;Ko, Heejung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.139-148
    • /
    • 2012
  • Circular concrete-filled tubes (CFTs) are composite members, which consists of a steel tube and concrete infill. CFTs have been used as building columns and bridge piers due to several advantages such as their strength-to-size efficiency and facilitation of rapid construction. Extensive experimental studies about CFT have been conducted for past decades. However experimental results alone are not sufficient to support the engineering of these components. Complementary advanced numerical models are needed to simulate the behavior of CFT to extend the experimental research and develop predictive tools required for design and evaluation of structural systems. In this study, a finite element modeling technique for CFT was developed. The confinement effects, and behavior of CFT subjected various types of loading predicted by the proposed finite element model for CFT were verified by comparing with test results.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.