• Title/Summary/Keyword: Composite shielding

Search Result 126, Processing Time 0.031 seconds

Design and Analysis of Electromagnetic Wave Absorbing Structure Using Layered Composite Plates (적층 복합재 판을 이용한 전자기파 흡수 구조체의 설계)

  • 오정훈;홍창선;오경섭;김천곤;이동민
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.18-23
    • /
    • 2002
  • The absorption and the interference shielding of the problems thor both commercial and military purposes. In this study, the minimization of the electromagnetic wale reflections using composite layers with different dielectric properties was performed. Dielectric constants were measured for glass/epoxy composites containing conductive carbon blacks and carbon/epoxy fabric composites. Using the measured permittivities of the composites having various carbon black contents, the optimal electromagnetic wave absorbing structure in X-band(8.2GHz-12.4GHz) was determined. The optimal multi-layered composite plates have the thickness of 2.6mm. The maximum reflection loss is -30dB at 10GHz, and the bandwidth haying the absorptivity lower than -l0dB is about 2GHz.

Environmental Stability of EMI Shielding PET Fabric/Polypyrrole Composite (전자파차폐 PET직물/폴리피롤 섬유복합체의 안정성)

  • 김한균;변성원;정성훈;홍영기;주진수;송기태;박연흠;이준영
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.310-313
    • /
    • 2001
  • 전자파나 정전기는 현대사회를 살아가는 모든 이에게 공통의 관심점이 되고 있고, 문명이 발달할수록 전자기기의 사용이 증대되면서 전자파 및 정전기의 발생은 그에 비례하여 증가하고 있다. 80년대 초부터 미국에서는 각종 유해 전자파로부터 정밀 전자기기의 보호 및 이로 인한 오동작의 방지 등을 위하여 전자파규제를 하기 시작하였고, 오늘날에는 전자파가 인체에 미치는 영향에 대한 대중적 우려에 의하여 그 필요성이 더욱 증폭되고 있다. (중략)

  • PDF

Electromagnetic interference shielding effectiveness and mechanical properties using metal powder/carbon fiber and epoxy-matrix composites (메탈 파우더/탄소 섬유강화 복합재료의 전자파 치폐 효과와 기계적성질)

  • HAN GIL-YOUNG;AHN DONG-GU;KIM JIN-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.376-379
    • /
    • 2004
  • The aim of this study is to prepare mixed Ni/Mg/Al/Cu/Ti powder in epoxy matrix with carbon fiber (NCF, MCF, ACF, CCF, TCF) conductive composite possessing eletromagnetic interference(EMI) shilding effectiveness(SE). A series if NCF/MCF/ACF/CCF/TCF composite were prepared by the hand lay up method. The various compositions of NCF/MCF/ACF/CCF/TCF were 10, 25, 50 percent by weight. The best EMI shilding effectiveness of all NCF/MCF/ACF is doout 40dB.

  • PDF

Characteristics of Shield Materials for Wireless Power Transfer

  • Chu, In Chang;Jeong, Jinseong
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.291-294
    • /
    • 2014
  • In this paper, we examine the electrical and magnetic properties of three different types of shield materials used for wireless power transfer systems: namely, FeSiAl-composite, NiZn-ferrite, and FeSi-amorphous types. The power transfer efficiency and resistance of an RX coil are measured, while varying the shield thickness. For all three types, a thicker shield provides better power transfer efficiency. Analysis of the measurements shows that the FeSiAl-composite type is suitable for systems with size limitation. In terms of magnetic properties, the FeSi-amorphous type shows the best features, and is suited to high power applications. This work can be used as a guideline to select suitable shielding material in various wireless power transfer systems.

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

An empirical study on the X-ray attenuation capability of n-WO3/n-Bi2O3/PVA with added starch

  • Oliver, Namuwonge;Ramli, Ramzun Maizan;Azman, Nurul Zahirah Noor
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3459-3469
    • /
    • 2022
  • Matrix composites of n-WO3/n-Bi2O3/PVA with different loadings of n-WO3/n-Bi2O3 mixtures (0-15 wt%) and starch (0 and 3 wt%) were fabricated by using melt-mixing method. The X-ray attenuation capability were evaluated based on mass attenuation coefficient (μ/⍴) using a general diagnostic X-ray machine at 40-100 kVp. The effect of starch addition on the dispersion of the fillers in the PVA matrix were observed by using FESEM through morphological analysis. The fabricated samples have shrunken and caused their thickness to be decreased (0.35 mm-0.55 mm) after the drying process even though fixed thickness (2.0 mm) was set initially. The density and HVL values of the samples with 3 wt% starch was seen lower than samples without starch (0 wt%), however the former have provided improvement in filler dispersion and better X-ray attenuation capability compared to the latter. As conclusion, the matrix composite of n-WO3/n-Bi2O3/PVA with 15 wt% of n-Bi2O3, 8 wt% of n-WO3 and 3 wt% starch can be selected as the best promising candidate for X-ray shielding materials.

Preparation of ZnO Nano Powder and High-transparent UV Shielding Dispersion Sol (ZnO 나노분말 및 고투명성 자외선 차단 분산 졸의 제조)

  • Lee, Hun Dong;Kim, Jin Mo;Son, Dae Hee;Lee, Seung-Ho;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.391-395
    • /
    • 2013
  • In this study, zinc oxide (ZnO) nano powder, well known as an UV absorbing material, was synthesized with three synthetic conditions by the hydrothermal method. After ZnO nano powder was surface-modified with various silane coupling agents to improve dispersion property, a dispersion sol was prepared with dispersant for 72 h by the ball-milling of surface-modified ZnO nano powder. The dispersion sol, prepared by modifying the surface of the ZnO nano powder with an average size of about 30 nm using 3-chloropropyl trimethoxy silane, showed an excellent dispersion stability with a high UV-shielding and visible trnasparency.

Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites (탄소섬유강화 복합재료의 전자파 차폐특성)

  • 심환보;서민강;박수진
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.860-868
    • /
    • 2000
  • In this work, the electro-magnetic interference (EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness (SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0$^{\circ}$. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83~98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary. the repeating laminates structure shows the opposite tendency. Especially, 90$^{\circ}$ repeating laminate structure shows the SE more than 90% over the measuring frequency.

  • PDF

Neutron-shielding behaviour investigations of some clay-materials

  • Olukotun, S.F.;Mann, Kulwinder Singh;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Joshi, Amit;Tekin, H.O.;Sayyed, M.I.;Fasasi, M.K.;Balogun, F.A.;Korkut, Turgay
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1444-1450
    • /
    • 2019
  • The fast-neutron shielding behaviour (FNSB) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated using effective removal cross section, ${\Sigma}_R(cm^{-1})$, mass removal cross section, ${\Sigma}_{R/{\rho}}(cm^2g^{-1})$ and Mean free path, ${\lambda}$ (cm). These parameters decide neutron shielding behaviour of any material. A computer program - WinNC-Toolkit has been used for computation of these parameters. The toolkit evaluates these parameters by using elemental compositions and densities of samples. The proficiency of WinNC-Toolkit code was probe by using MCNPX and GEANT4 to model fast neutron transmission of the samples under narrow beam geometry, intending to represent the actual experimental setup. Direct calculation of effective removal cross section ($cm^{-1}$) of the samples was also carried out. The results from each of the methods for each types of the studied clay-materials (Ball clay and Kaolin) shows similar trend. The trend might be the fingerprint of water content retained in each of the samples being baked at different temperature. The compositions of each sample have been obtained by Particle-Induced X-ray Emission (PIXE) technique (Tandem Pelletron Accelerator: 1.7 MV, Model 5SDH). The FNSB of the selected clay-materials have been compared with standard concrete. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their FNSB.

Fabrication of $V_2O_5$ Nanowire/PVA (Polyvinyl Alcohol) Composites for the Electric Applications (전기적 응용을 위한 바나듐옥사이드 나노선/폴리비닐 알코올 복합체 제작)

  • Lee, Jae-Woo;Lee, Kang-Ho;Kim, Gyu-Tae
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.216-219
    • /
    • 2009
  • $V_2O_5$ nanowire / polyvinyl alcohol (PVA) polymer composite fibers were fabricated by a new simple method. The reaction of PVA and acetone facilitates the formation of the polymer membrane which can be used to make the fiber. Composite fiber is percolative in the conductance because of the low percolation threshold in $V_2O_5$ nanowire networks. The fiber composite can be applied to the electromagnetic shielding originating from the conductive nature.

  • PDF