• Title/Summary/Keyword: Composite shell

Search Result 630, Processing Time 0.033 seconds

Effect of Enteromorpha intenstinalis Powder Addition in the Quality of Dumpling Shell (만두피 제조시 파래 분말 첨가가 품질에 미치는 영향)

  • Park, Bock-Hee;Ju, Sung-Mee;Cho, Hee-Sook
    • Food Science and Preservation
    • /
    • v.17 no.6
    • /
    • pp.814-819
    • /
    • 2010
  • We investigated quality changes in dumpling shells prepared using various concentrations of Enteromorpha intestinalis powder(EIP). Dumpling shells were prepared by addition of 0%, 3%, 5%, 7%, and 9%(all w/w) EIP to the flour used in the basic formulation. The gelatinization temperature of the EIP-wheat flour composite increased whereas initial viscosity at $95^{\circ}C$, viscosity at $95^{\circ}C$ after 15 min, and maximum viscosity, all fell with increasing EIP content, as measured by amylography. In addition, the Hunter's color L, a, and b values decreased significantly with increasing amounts of EIP. All of cooked weight, cooked volume, and water absorption of dumpling shells prepared with EIP were significantly greater than control values. In terms of textural characteristics, addition of EIP increased hardness, springiness, and chewiness, but decreased adhesiveness and cohesiveness. Sensory evaluation showed that dumpling shells prepared with 5% (w/w) EIP were preferred.

Production of Reactive Diluent for Epoxy Resin with High Chemical Resistance from Natural Oil : Optimization Using CCD-RSM (천연오일로부터 내화학성이 향상된 에폭시계 수지용 반응성 희석제의 제조 : CCD-RSM을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.147-152
    • /
    • 2020
  • In this study, we dedicated to optimize the process for a reactive diluent for epoxy resin of improved chemical resistance by using cardanol, a component of natural oil of cashew nut shell liquid (CNSL). The central composite design (CCD) model of response surface methodology (RSM) was used for the optimization. The quantitative factors for CCD-RSM were the cardanol/ECH mole ratio, reaction time, and reaction temperature. The yield, epoxy equivalent, and viscosity were selected as response values. Basic experiments were performed to design the reaction surface analysis. The ranges of quantitative factors were determined as 2~4, 4~8 h, and 100~140 ℃ for the cardanol/ECH reaction mole ratio, reaction time, and reaction temperature, respectively. From the result of CCD-RSM, the optimum conditions were determined as 3.33, 6.18 h, and 120 ℃ for the cardanol/ECH reaction mole ratio, reaction time, and reaction temperature, respectively. At these conditions, the yield, epoxy equivalence, and viscosity were estimated as 100%, 429.89 g/eq., and 41.65 cP, respectively. In addition, the experimental results show that the error rate was less than 0.3%, demonstrating the validity of optimization.

Effects of Microcapsules on Mechanical Properties and Thermal Stability of Microcapsule Embedded Polymeric Resins (마이크로캡슐이 폴리머 수지의 기계적 특성 및 열안정성에 미치는 영향)

  • Yoon, Sung Ho;Kim, Min Sik;Jang, Se Yong
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.316-321
    • /
    • 2015
  • This study investigated the effects of microcapsules on mechanical properties and thermal stability of the composite material containing self-healing microcapsules. To this end, tensile specimens and flexural specimens containing melamine-urea-formaldehyde (M-U-F) shell walled microcapsules with diameters of $70{\sim}130{\mu}m$ were manufactured. Varying amount of microcapsules in the specimens was considered: 0 wt%, 0.5 wt%, and 1.0 wt%. The tensile and flexural tests were conducted to evaluate mechanical properties of the specimens containing the microcapsules and the thermogravimetric analysis test was performed to evaluate the thermal stability of the specimens containing the microcapsules. The results show that the tensile strength of the specimens was sensitive to the amount of the microcapsules compared to the tensile modulus even though the tensile modulus of the specimens was not significantly affected by the amount of the microcapsules. However, reduction of the tensile strength was not linearly proportional to the amount of microcapsules; similar results were observed in the flexural test. The weight changes of the specimens containing the microcapsules, as a function of temperature, were similar to those specimens without microcapsules. The thermal stability of the specimens was not affected significantly by the microcapsules embedded in the specimens.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok;Hong, Chang-Hyo;Lee, Young-Jin;Choi, Gangho;Shin, Dong-Jin;Lim, Dong-Hwan;Jeong, Soon-Jong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.549-557
    • /
    • 2019
  • More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.

Nonlinear Dynamic Characteristics of Antisymmetric Laminated Shells (역대칭 적층쉘의 비선형 동적 특성에 관한 연구)

  • Park, Sung Jin;Mikami, Takashi;Kim, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.691-700
    • /
    • 1998
  • Based on Von Karman-Donnell kinematic assumptions for laminated shells, the nonlinear vibration behaviour of antisymmetrically or asymmetrically laminated cross-ply circular cylindrical shells with clamped and simply-supported ends are studied by a multi-mode approach. A equation is formulated and satisfies the associated compatibility equation and all boundary conditions. The displacement function is assumed to take the form of the lowest linear vibration mode and to satisfy continuity of the circumferential displacement. The nonlinear vibration equation is derived by the Galerkin's method. And nonlinear frequency is obtained by using the harmonic balance method as a function of lamination parameters, material constants, aspect ratio and amplitude of vibration. The effect of initial imperfection is also included. Results of the non-linear vibration are presented for different amplitudes of initial imperfection and four sets of boundary conditions. Present results are compared well with existing analysis results.

  • PDF

Investigation of stiffening scheme effectiveness towards buckling stability enhancement in tubular steel wind turbine towers

  • Stavridou, Nafsika;Efthymiou, Evangelos;Gerasimidis, Simos;Baniotopoulos, Charalampos C.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1115-1144
    • /
    • 2015
  • Current climate conditions along with advances in technology make further design and verification methods for structural strength and reliability of wind turbine towers imperative. Along with the growing interest for "green" energy, the wind energy sector has been developed tremendously the past decades. To this end, the improvement of wind turbine towers in terms of structural detailing and performance result in more efficient, durable and robust structures that facilitate their wider application, thus leading to energy harvesting increase. The wind tower industry is set to expand to greater heights than before and tapered steel towers with a circular cross-section are widely used as more capable of carrying heavier loads. The present study focuses on the improvement of the structural response of steel wind turbine towers, by means of internal stiffening. A thorough investigation of the contribution of stiffening rings to the overall structural behavior of the tower is being carried out. These stiffening rings are placed along the tower height to reduce local buckling phenomena, thus increasing the buckling strength of steel wind energy towers and leading the structure to a behavior closer to the one provided by the beam theory. Additionally to ring stiffeners, vertical stiffening schemes are studied to eliminate the presence of short wavelength buckles due to bending. For the purposes of this research, finite element analysis is applied in order to describe and predict in an accurate way the structural response of a model tower stiffened by internal stiffeners. Moreover, a parametric study is being performed in order to investigate the effect of the stiffeners' number to the functionality of the aforementioned stiffening systems and the improved structural behavior of the overall wind converter.

Fabrication of Hollow Micro-particles with Nonspherical Shapes by Surface Sol-gel Reaction (표면 솔-젤 반응을 활용한 마이크로미터 크기의 비구형상 공동 입자의 제조)

  • Cho, Young-Sang;Jeon, Seog-Jin;Yi, Gi-Ra
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.611-618
    • /
    • 2007
  • We demonstrate the sol-gel coating technique of colloidal clusters for producing hollow micro-particles with complex morphologies. Cross-linked amidine polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion copolymerization of styrene and divinylbenzene. The amidine PS particles were self-organized inside toluene-in-water emulsion droplets to produce large quantities of colloidally stable clusters. These clusters were coated with thin silica shell by sol-gel reaction of tetraethylorthosilicate (TEOS) and ammonia, and the organic polystyrene cores were removed by calcination at high temperature to generate nonspherical hollow micro-particles with complex morphologies. This process can be used to prepare hollow particles with shapes such as doublets, tetrahedra, icosahedra, and others.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.