• 제목/요약/키워드: Composite repair

검색결과 297건 처리시간 0.021초

CAC를 이용한 긴급도로 보수재의 현장 적용성 (Field Applicability Of Emergency Road Repair Material Using the CAC)

  • 현지수;김진만;최홍범;이하나;구자술
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.154-155
    • /
    • 2015
  • This study was to review the basic characteristics in order to evaluate field application of the emergency road repair materials for development of CAC(Calcium Aluminate Composite) usage. The experiment was conducted with two phases of field and laboratory conditions and the laboratory experiment consisted indoor and outdoor tests for compressive and flexural strength. In the result of an experiment, for the compressive strength test, the specimens that cured in the laboratory conditions were not satisfied the requirement of standards, while the specimens that cured in the field conditions were well satisfied with those. For flexural strength test, the result value was satisfied with the requirement on the standards only in outdoor curing condition of laboratory experiment. Based on these results, it is expected that the CAC can be used as an emergency road repair material for field conditions.

  • PDF

실리카흄과 현장기계함침을 이용한 유리섬유 복합재(CAF)의 콘크리트 구조물 보수보강공법 (Repair and Retrofit System of Concrete Structures using Fiber Glass and Epoxy Composite Sheets, Improved Through Utilization of Silica fume and Mechanical Saturator)

  • 유용하;권성준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.785-792
    • /
    • 2000
  • Repair and retrofit system of concrete structures has been developed from conventional reinforced concrete overlaying, steel plate bonding and recently to fiber composite systems. Research and study on carbon, aramid, and glass fiber composite system has been actively carried out from all over the world Glass fiber composite is proved to be competitive technically and enconomically, among fiber composite system. CAF system is a system developed locally using all domestic materal, glass fabric and epoxy, and improved in shear bonding property by utilizing silica fume mixed with epoxy. All the tests on material properties, structural behavior, constructiveness at site and quality control procedure proved to be most appropriate system so far developed. Futher research work is and will be under progress for utilization of this system which will be applied to more adverse situation.

  • PDF

Finite element analysis of corner cracked aluminum panels repaired with bonded composite patch

  • Abdelkader Boulenouar;Mohammed A. Bouchelarm;Noureddine Benseddiq
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.271-280
    • /
    • 2023
  • In this study, the three-dimensional finite element method is used to analyze the behavior of corner cracks in finite-thickness plates repaired with a composite patch. The normalized stress intensity factor at the crack front is used as fracture criterion. Comparison of stress intensity factor values at the internal and external positions of repaired quarter-elliptical corner crack was done, for three repair techniques. The influence of mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor (SIF) at the crack-front was highlighted. The obtained results show that the application of double patch leads to a remarkable reduction of SIF at the crack front, compared to facial and lateral repairs.

A computational analysis of the scarf angle on a composites repair

  • Kim, Yun-Hae;Jo, Young-Dae;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.9-15
    • /
    • 2011
  • This study examined the relationship between the scarf angle and stress distribution, and estimated the strength recovery via a finite element analysis. The following conclusions were drawn from this study. Resin will fracture due to a tensile load with a high scarf angle, which is similar to the patch repair method. An applied stress can be loaded to a repaired laminate if the scarf angle is $5^{\circ}$. The Von-Mises stress increases with decreasing scarf angle, with the exception of a scarf angle of $30^{\circ}$, where the scarf angle can indicate the rates of shear and normal stresses. Strength recovery can be better if the scarf angle is decreased to a lower angle. However, scarf machining requires more time, a high skill level and considerable expense. Therefore, a scarf angle of $5^{\circ}$ is the most effective for a repair. These results may provide a guide for engineers wishing to formulate a standard for repair. The scarf angle needs to be carefully managed for a more efficient composite repair.

Porcelain repair - Influence of different systems and surface treatments on resin bond strength

  • Yoo, Ji-Young;Yoon, Hyung-In;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권5호
    • /
    • pp.343-348
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the bond strength of composite resin on the fracture surface of metal-ceramic depending on the repair systems and surface roughening methods. MATERIALS AND METHODS. A total of 30 disk specimens were fabricated, 15 of each were made from feldspathic porcelain and nickel-chromium base metal alloy. Each substrate was divided into three groups according to the repair method: a) application of repair system I (Intraoral Repair Kit) with diamond bur roughening (Group DP and DM), b) application of repair system I with airborne-particle abrasion (Group SP and SM), and c) application of repair system II (CoJet Intraoral Repair System, Group CP and CM). All specimens were thermocycled, and the shear bond strength was measured. The data were analyzed using the Kruskal-Wallis analysis and the Mann-Whitney test with a significance level of 0.05. RESULTS. For the porcelain specimens, group SP showed the highest shear bond strength ($25.85{\pm}3.51MPa$) and group DP and CP were not significantly different. In metal specimens, group CM showed superior values of bond strength ($13.81{\pm}3.45MPa$) compared to groups DM or SM. CONCLUSION. Airborne-particle abrasion and application of repair system I can be recommended in the case of a fracture localized to the porcelain. If the fracture extends to metal surface, the repair system II is worthy of consideration.

항공기용 복합재 샌드위치부품의 수리시 열간노출에 따른 물성변화에 관한 연구 (A Study for the Characteristic Changes under the Repeated Thermal Exposure in the Process of Repairing Aircraft Sandwich Structures)

  • 최병근;김돈원;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.105-110
    • /
    • 2001
  • Autoclave curing using the vacuum bagging method is widely used for the manufacture of advanced composite prepreg airframe structures. Due to increasing use of advanced composites, specific techniques have been developed to repair damaged composite structures. In order to repair the damaged part, it is required that the damaged areas be removed, such as skin and/or honeycomb core, by utilizing the proper method and then repairing the area by laying up prepreg (and core) then curing under vacuum using the vacuum bagging materials. It shall be cured either in an oven or autoclave per the original specification requirements. Delamination can be observed in the sound areas during and/or after a couple times exposure to the elevated curing temperature due to the repeated repair condition. This study was conducted for checking the degree of degradation of properties of the cured parts and delamination between skin prepreg and honeycomb core. Specimens with glass honeycomb sandwich construction and glass/epoxy prepreg were prepared. The specimens were cured 1 to 5 times at $260^{circ}F$ in an autoclave and each additionally exposed 50, 100 and 150 hours in the $260^{circ}F$ oven. Each specimen was tested for tensile strength, compressive strength, flatwise tensile strength and interlaminar shear strength. To monitor the characteristics of the resin itself, the cured resin was tested using DMA and DSC. As a results, the decrease of Tg value were observed in the specific specimen which is exposed over 50 hrs at $260^{circ}F$. This means the change or degradative of resin properties is also related to the decrease of flatwise tensile properties. Accordingly, minimal exposure on the curing temperature is recommended for parts in order to prevent the delation and maintain the better condition.

  • PDF

Bonding of conventional provisional resin to 3D printed resin: the role of surface treatments and type of repair resins

  • Lim, Na-Kyung;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권5호
    • /
    • pp.322-328
    • /
    • 2020
  • PURPOSE. This study evaluated the shear bond strength between 3D printed provisional resin and conventional provisional resin depending on type of conventional provisional resin and different surface treatments of 3D printed resin. MATERIALS AND METHODS. Ninety-six disc-shaped specimens (Ø14 mm × 20 mm thickness) were printed with resin for 3D printing (Nextdent C&B, Vertex-Dental B. V., Soesterberg, Netherlands). After post-processing, the specimens were randomly divided into 8 groups (n=12) according to two types of conventional repair resin (methylmethacrylate and bis-acryl composite) and four different surface treatments: no additional treatment, air abrasion, soaking in methylmethacrylate (MMA) monomer, and soaking in MMA monomer after air abrasion. After surface treatment, each repair resin was bonded in cylindrical shape using a silicone mold. Specimens were stored in 37℃ distilled water for 24 hours. The shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. Failure modes were analyzed by scanning electron microscope. Statistical analysis was done using one-way ANOVA test and Kruskal-Wallis test (α=.05). RESULTS. The group repaired with bis-acryl composite without additional surface treatment showed the highest mean shear bond strength. It was significantly higher than all four groups repaired with methylmethacrylate (P<.05). Additional surface treatments, neither mechanical nor chemical, increased the shear bond strength within methylmethacrylate groups and bis-acryl composite groups (P>.05). Failure mode analysis showed that cohesive failure was most frequent in both methylmethacrylate and bis-acryl composite groups. CONCLUSION. Our results suggest that when repairing 3D printed provisional restoration with conventional provisional resin, repair with bis-acryl composite without additional surface treatment is recommended.

하비갑개 골-골막-점막 복합이식을 이용한 뇌척수액 유출 복원술 (Usefulness of Inferior Turbinate Bone-Periosteal-Mucosal Composite Free Graft for Cerebrospinal Fluid Leakage)

  • 백광하;김지형;문영민;김창훈;윤주헌;조형주
    • Journal of Rhinology
    • /
    • 제25권2호
    • /
    • pp.123-129
    • /
    • 2018
  • Background and Objectives: Endoscopic repair of cerebrospinal fluid (CSF) leak can avoid morbidity of open approaches and has shown a favorable success rate. Free mucosal graft is a good method, and multi-layered repair is more favorable. The inferior turbinate has been commonly utilized for the free mucosal graft, but we newly designed it as a bone-periosteal-mucosal composite graft for multilayered reconstruction. Subjects and Method: Four subjects with a skull base defect were treated with this method. The inferior turbinate was partially resected including the conchal bone and was trimmed according to defect size. Both bony parts and periosteum were preserved on the basolateral side of the mucosa as a composite graft. The graft was applied to the defect site using an overlay technique. Results: All cases were successfully repaired without any complications. Three of them had a defect size greater than 10-12 mm, and the graft stably repaired the CSF leakage. Conclusion: Endoscopic repair of CSF leakage using inferior turbinate composite graft is a simple and easy method and would be favorable for defect sizes greater than 10 mm.

패치 보수된 샌드위치 복합재 적층판의 압축시 강도회복 평가 (Compressive Strength Restoration Evaluation of Sandwich Composite Laminates Repaired by Scarf Method)

  • 김정석;윤혁진;김승철;서승일
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.110-114
    • /
    • 2009
  • 본 연구에서는 스카프 패취가 접착된 복합소재 샌드위치 적층판의 압축강도 회복특성을 평가하였다. 본 연구에서는 알루미늄 허니콤 심재와 CF1263 직조된 탄소/에폭시 면재를 갖는 틸팅열차차체에 적용된 샌드위치 시험편이 이용되었다. 샌드위치 시험편은 저속충격에 의해 손상을 가하고, 스카프 보수기법에 의해 보수되었다. 보수 후 CAI시험을 통해 충격 후 압축강도를 평가하여 강도회복정도를 정량적으로 규명하였다. 본 시험으로부터 단지 스카프 보수를 적용한 경우 약 72%정도의 강도를 회복하였고, 추가보수층 한층을 추가했을 경우 약 91%까지 강도를 회복시킬 수 있음을 확인하였다.

도재 수복용 복합레진의 색 안정성에 관한 연구 (THE COLOR STABILITY OF PORCELAIN REPAIR COMPOSITE RESINS)

  • 신미란;조혜원;진태호
    • 대한치과보철학회지
    • /
    • 제29권3호
    • /
    • pp.171-179
    • /
    • 1991
  • The purpose of this study was to investigate the color stability of 3 porcelain repair composite resins Twenty specimens of each composite resin were made and ten specimens were polished at 10 minutes after polymerization, and the others were polished at 48 hours after polymerization. For 60 days, the color characteristics were measured by fiber-optic colorimeter (Model Tc-6FX, Tokyo Denshoku Co.). The obtained results were as follows: 1. The changes of $a^*$ value and $b^*$ value in composite resin polished at 10min. after polymerization were greater than those of composite resins polished at 48 hrs. after polymerization. 2. The $a^*$ values of all composite resins were increased and the $b^*$ values were decreased. 3. The $L^*$ values were decreased in composite resin manufactured by K & B Co., which were polished at 10min. after polymerization, but increased in composite resin manufactured by K & M Co., polished at 48 hrs. after polymerization.

  • PDF