• Title/Summary/Keyword: Composite piers

Search Result 53, Processing Time 0.028 seconds

Effects of Design Parameters of Steel-Embedded Precast Composite Piers (강재매입형 조립식 합성교각의 설계 변수 영향)

  • Shim, Chang-Su;Lim, Hyun-Sik;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.53-54
    • /
    • 2009
  • Steel-embedded composite piers provide flexible design alternatives to satisfy the required performance due to various design parameters of composite sections. For the fast construction of composite piers, bolt connection can be utilized for small size piers and post-tensioning to the pier segments for the large size piers. In this paper, experimental results on composite piers were investigated to evlauate the effects of design parameters on the behavior of composite piers. Appropriate sections and their integration methods were suggested according to the design conditions. For the modular construction of bridge piers, pier segments need to be divided considering their weight and careful considerations on details to adjust fabrication and construction error. Connection details for the pier cap were also proposed.

  • PDF

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.

The Study on the Structural Behavior of Concrete-filled Composite Piers (콘크리트충전 강합성 교각의 구조적 거동에 관한 연구)

  • 김유경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

Long-term Behavior of Precast Circular Composite Piers with Bonded Tendons (강연선으로 긴장한 강재매입형 조립식 합성교각의 장기거동)

  • Yoon, Jae-Young;Shim, Chang-Su;Chung, Young-Soo;Lim, Hyun-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.205-208
    • /
    • 2008
  • Steel-embedded composite piers can enhance the resistance of core concrete by confinement of the steel elements and also can strengthen the stability of the embedded steel elements by concrete parts, so that the resistance of the composite members and seismic requirements can be provided without increasing section dimensions and self-weight. While modular composite piers with single segment do not need prestressing, precast segment composite piers with multiple segments need to have prestressing to prevent excessive cracking at the joints. Initial stresses and deformation by the introduced prestress are changed by long-term properties of concrete and need to be considered in the design. This paper deals with the prestress losses by the measurement of load cells, strains of reinforcements, concrete and embedded steel tubes.

  • PDF

Finite Element Analysis of Inelastic Behavior of SRC Composite Piers (SRC 합성교각의 비탄성거동에 대한 유한요소해석)

  • Shim, Chang-Su;Han, Jung-Hoon;Park, Chang-Kyu;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.269-275
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is one of the most important design criteria. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcement such as hoop ties closely. Concrete encased composite columns can be utilized for bridge piers especially in seismic area. In this paper, finite element analyses are performed to study the nonlinear behavior of concrete encased composite columns with single core steel or multiple steel elements under static and quasi-static loads. The cross-sections of these specimens ate composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcement, encased steel member, and loading axis. Through the comparison between FE analyses and test results, adequate material models for confined concrete and unconfined concrete ate investigated. After getting the proper analysis models for composite columns, several parameters are considered to suggest design considerations on the details of composite piers.

  • PDF

Experimental studies of circular composite bridge piers for seismic loading

  • Chen, Sheng-Jin;Yang, Kuo-Chen;Lin, K.M.;Wang, C.C.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.261-273
    • /
    • 2012
  • This study proposes and examines a circular composite bridge pier for seismic resistance. The axial and flexural strengths of the proposed bridge pier are provided by the longitudinal reinforcing bars and the concrete, while the transverse reinforcements used in the conventional reinforced concrete pier are replaced by the steel tube. The shear strength of this composite pier relies on the steel tube and the concrete. This system is similar to the steel jacketing method which strengthens the existing reinforced concrete bridge piers. However, no transverse shear reinforcing bar is used in the proposed composite bridge pier. A series of experimental studies is conducted to investigate the seismic resistant characteristics of the proposed circular composite pier. The effects of the longitudinal reinforcing bars, the shear span-to-diameter ratio, and the thickness of the steel tube on the performance of strength, ductility, and energy dissipation of the proposed pier are discussed. The experimental results show that the strength of the proposed circular composite bridge pier can be predicted accurately by the similar method used in the reinforced concrete piers with minor modification. From these experimental studies, it is found that the proposed circular composite bridge pier not only simplifies the construction work greatly but also provides excellent ductility and energy dissipation capacity under seismic lateral force.

Performance of Precast Composite Piers for Fast Construction (급속시공형 프리캐스트 합성교각의 성능)

  • Shim, Chang-Su;Chung, Young-Soo;Yoon, Jae-Young;Park, Ji-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.221-224
    • /
    • 2008
  • Recently various types of prefabricated pier has been developed. In this paper, prefabricated composite columns with core steel elements embedded in concrete were proposed, which has no prestressing. Based on the previous research on composite columns with low steel ratio, the column were designed. A simple bolt connection detail between a footing and a pier element were also suggested. In order to investigate the seismic performance of the composite columns, several tests on concrete encased composite columns, which are prefabricated, were performed. Quasi-static tests were carried out and their performance was evaluated and compared with the results from the tests on CIP composite piers. In the case of precast piers, the end part of the pier needs to be carefully reinforced and related recommendations on details were derived.

  • PDF

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

A study on application of high strength steel SM570 in bridge piers with stiffened box section under cyclic loading

  • Kang, Lan;Suzuki, Motoya;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.583-594
    • /
    • 2018
  • Although a lot of experimental and analytical investigations have been carried out for steel bridge piers made of SS400 and SM490, the formulas available for SS400 and SM490 are not suitable for evaluating ultimate load and deformation capacities of steel bridge piers made of high strength steel (HSS) SM570. The effect of various parameters is investigated in this paper, including plate width-to-thickness ratio, column slenderness ratio and axial compression force ratio, on the ultimate load and deformation capacities of steel bridge box piers made of SM570 steel subjected to cyclic loading. The elasto-plastic behavior of the steel bridge piers under cyclic loads is simulated through plastic large deformation finite element analysis, in which a modified two-surface model (M2SM) including cyclic hardening is employed to trace the material nonlinearity. An extensive parametric study is conducted to study the influences of structural parameters on the ultimate load and deformation capacities. Based on these analytical investigations, new formulas for predicting ultimate load and deformation capacities of steel bridge piers made of SM570 are proposed. This study extends the ultimate load and deformation capacities evaluation of steel bridge piers from SS400, SM490 steels to SM570 steel, and provides some useful suggestions.