• 제목/요약/키워드: Composite number

검색결과 1,283건 처리시간 0.022초

복합구조 반복측정자료에 대한 모형 연구 (Modelling for Repeated Measures Data with Composite Covariance Structures)

  • 이재훈;박태성
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1265-1275
    • /
    • 2009
  • 본 논문에서는 반복인자가 여러 개인 반복측정자료에 대하여 반복인자간의 상관성을 고려한 복합공분산(composite covariance) 모형을 살펴보았다. 그러나 반복인자가 3개 이상인 경우에는 기존의 통계프로그램을 이용하여 적합하는 것이 불가능하다. 복합공분산 모형을 실제 자료에 적합하기위해 반복인자의 차원을 축소한 모형과 랜덤효과 모형을 이용하여 근사적으로 적합하는 방법을 제시하고 883명으로부터 수집한 반복인자가 3개인 혈압자료에 적용하였다.

Review of stud shear resistance prediction in steel-concrete composite beams

  • Bonilla, Jorge;Bezerra, Luciano M.;Mirambell, Enrique;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.355-370
    • /
    • 2018
  • In steel-concrete composite beams, longitudinal shear forces are transferred across steel flange-concrete slab interface by means of shear connectors. The connector behavior is highly non-linear and involves several complex mechanisms. The design resistance and stiffness of composite beams depends on the shear connection behavior and the accuracy in the connector resistance prediction is essential. However determining the stud shear resistance is not an easy process: analytical methods do not give an adequate response to this problem and it is therefore necessary to use experimental methods. This paper present a summary of the main procedures to predict the resistance of the stud shear connectors embedded in solid slab, and stud shear connectors in composite slab using profiled steel sheeting with rib perpendicular to steel beam. A large number of experimental studies on the behavior of stud shear connectors and reported in the literature are also summarized. A comparison of the stud shear resistance prediction using six reference codes (AISC, AASHTO, Eurocode-4, GB50017, JSCE and AS2327.1) and other procedures reported in the literature against experimental results is presented. From this exercise, it is concluded that there are still inaccuracies in the prediction of stud shear resistance in all analysed procedures and that improvements are needed.

A pre-stack migration method for damage identification in composite structures

  • Zhou, L.;Yuan, F.G.;Meng, W.J.
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.439-454
    • /
    • 2007
  • In this paper a damage imaging technique using pre-stack migration is developed using Lamb (guided) wave propagation in composite structures for imaging multi damages by both numerical simulations and experimental studies. In particular, the paper focuses on the experimental study using a finite number of sensors for future practical applications. A composite laminate with a surface-mounted linear piezoelectric ceramic (PZT) disk array is illustrated as an example. Two types of damages, one straight-crack damage and two simulated circular-shaped delamination damage, have been studied. First, Mindlin plate theory is used to model Lamb waves propagating in laminates. The group velocities of flexural waves in the composite laminate are also derived from dispersion relations and validated by experiments. Then the pre-stack migration technique is performed by using a two-dimensional explicit finite difference algorithm to back-propagate the scattered energy to the damages and damages are imaged together with the excitation-time imaging conditions. Stacking these images together deduces the resulting image of damages. Both simulations and experimental results show that the pre-stack migration method is a promising method for damage identification in composite structures.

Experimental and FE simulations of ferrocement columns incorporating composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.;Refat, Hala M.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.155-171
    • /
    • 2017
  • This paper presents a proposed method for producing reinforced composite concrete columns reinforced with various types of metallic and non metallic mesh reinforcement. The experimental program includes casting and testing of twelve square columns having the dimensions of $100mm{\times}100mm{\times}1000mm$ under concentric compression loadings. The test samples comprise all designation specimens to make comparative study between conventionally reinforced concrete column and concrete columns reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh. The main variables are the type of innovative reinforcing materials, metallic or non metallic, the number of layers and volume fraction of reinforcement. The main objective is to evaluate the effectiveness of employing the new innovative materials in reinforcing the composite concrete columns. The results of an experimental investigation to examine the effectiveness of these produced columns are reported and discussed including strength, deformation, cracking, and ductility properties. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the reinforced concrete composite columns. The numerical model could agree the behavior level of the test results. ANSYS-10.0 Software. Also, parametric study is presented to look at the variables that can mainly affect the mechanical behaviors of the model such as the change of column dimensions. The results proved that new reinforced concrete columns can be developed with high strength, crack resistance, and high ductility properties using the innovative composite materials.

Experimental investigation of novel pre-tightened teeth connection technique for composite tube

  • Li, Fei;Zhao, Qilin;Chen, Haosen;Xu, Longxing
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.161-172
    • /
    • 2017
  • A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pre-tightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.

사회기반시설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-I 인장 거동 (Characterization of Metal-FRP Laminated Composites for Strengthening of Structures: Part-I Tensile Behavior)

  • 박철우
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.54-63
    • /
    • 2011
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the tensile test with various experimental variables including the number, the angle and the combination of FRP laminates. From the test results, both aluminum and steel-FRP laminate composite material showed increased fracture toughness. However, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions. In general, steel-FRP laminate composite showed better tensile performance in regards to the seismic retrofit purposes.

Experimental study of cyclic behavior of composite vertical shear link in eccentrically braced frames

  • Shayanfar, M.A.;Barkhordari, M.A.;Rezaeian, A.R.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.13-29
    • /
    • 2012
  • This paper is an experimental study on the behavior of vertical shear link in normal (steel section with and without stiffener) and composite (steel section with concrete located at the area limited to web and flanges of the section) configurations. This study is mainly aimed to perceive failure mechanism, collect laboratory data, and consider the effect of number of transverse reinforcements on strength and ductility of composite vertical links. There have been four specimens selected for examining the effects of different details. The first specimen was an I section with no stiffener, the second composed of I section with stiffeners provided according to AISC 2005. The third and fourth specimens were composed of I sections with reinforced concrete located at the area between its flanges and web. The tests carried out were of quasi-static type and conducted on full scale specimens. Experimental findings show remarkable increase in shear capacity and ductility of the composite links as compared to the normal specimens.

비중심합성계획을 이용한 순차적 실험방법에 관한 연구 (A Study on Sequential Design of Experiments Using Non-Central Composite Designs)

  • 신병철;변재현;윤태홍
    • 품질경영학회지
    • /
    • 제49권1호
    • /
    • pp.31-45
    • /
    • 2021
  • Purpose: A noncentral composite design method is to be developed to explore farther region for the first factorial design. A general guideline for sequential experimentation is provided. Methods: (1) A non-overlapping noncentral composite design (NNCD) is developed, in which the second factorial design shares one design point that indicates the best response value in the first factorial design. (2) Four composite designs are compared in terms of the four design evaluation criteria, which are D-, A, G, and I-optimality. (3) A follow-up design strategy is suggested based on the interaction effect, direction of improvement, number of factors. Results: (1) NNCD and model building method are presented, which is useful for exploring farther region from first factorial design block. (2) The performances of the four composite designs are compared. (3) A follow-up design strategy is suggested. Conclusion: (1) NNCD will be useful to explore farther region for the first factorial design. (2) A follow-up design strategy can be beneficial to the experimental practitioners for product and process design and improvement.

Monte Carlo simulation and study of REE/PET composites with wide γ-ray protection

  • Tongyan Cui;Ruixin Chen;Shumin Bi;Rui Wang;Zhongjian Ma;Qingxiu Jia
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2919-2926
    • /
    • 2023
  • In this paper, rare earth element (REE)/polyester composites were designed with lanthanum oxide, gadolinium oxide, and lutetium oxide as ray shielding agents, and polyethylene terephthalate (PET) as the base. Monte Carlo simulation was carried out using FLUKA software. We found that the radiation protection performance of the composite is affected by the type and amount of REE; a higher amount of REE equated to a better radiation protection performance of the composite. When the thickness of the composite and total thickness of the REE is constant, the number of superimposed layers inside the composite does not affect its shielding performance. Compared with a single-type REE/PET composite, a mixed-type REE/PET composite has a wider range of γ-ray absorption and better radiation protection performance. When the mass ratio of PET to REE is 2:8 and different types of REE are mixed with equal mass, several 0.2 cm-thick mixed-type REE/PET composites can shield >70% of 60 and 80 KeV γ-rays.

소수(素數, prime number) 개념에 대한 중학생의 이해 (Middle School Students' Understanding about Prime Number)

  • 조경희;권오남
    • 대한수학교육학회지:학교수학
    • /
    • 제12권3호
    • /
    • pp.371-388
    • /
    • 2010
  • 이 논문의 목적은 소수(素數, prime number) 개념을 처음 배우는 학생들이 소수와 그 관련 개념들을 어떻게 이해하고 있는지를 탐구하기 위한 것이다. 이를 위하여 소수와 합성수 개념을 학습한 직후의 중학교 1학년 학생들에게 설문조사를 중심으로 자료를 수집하고 분석하였다. 연구 결과, 학생들은 주어진 자연수의 소수성을 판정하기 위한 소수의 기능적인 정의를 선호하며, 주어진 자연수의 약수를 찾는 것에만 주목하여 소수와 합성수를 곱셈적 관계로 이해하는데 어려움을 나타내었다. 이러한 결과는 학생들이 자연수의 곱셈적 기본 단위로서 소수 개념의 본질적인 중요성을 인식하고 산술의 기본 정리가 보장하는 자연수의 곱셈적 구조를 이해할 수 있도록 하는 교수학적 전략의 필요성을 제안한다.

  • PDF