• Title/Summary/Keyword: Composite laminates

Search Result 640, Processing Time 0.039 seconds

Prediction of Progressive Interlaminar Fracture in Curved Composite Laminates Under Mode I Loading (모드 I 하중하에서 곡률이 있는 복합재 적층판의 점진적 층간파손 예측)

  • Kang, Seunggu;Shin, Kwangbok;Lee, HyunSoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.930-932
    • /
    • 2017
  • In this paper, prediction of progressive interlaminar fracture in curved composite laminates under mode I loading was described. The prediction of progressive interlaminar fracture in curved composite laminates was conducted using cohesive zone model(CZM) in ABAQUS V6.13. Interlaminar fracture toughness used as input parameters in CZM was obtained through mode I, mode II and mixed mode I/II tests. The behaviors of progressive interlaminar fracture for curved composite laminates showed a good agreement between experimental and numerical results.

  • PDF

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates

  • Benhenni, Mohamed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Adim, Belkacem;Li, Yuming;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.119-136
    • /
    • 2018
  • In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.

Influence of Hygrothermals on Residual Fatigue Bending Strength of CFRP Composite Laminates (CFRP적층재의 잔류피로굽힘강도애 미치는 열습의 영향)

  • 박노식;임광희;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 1997
  • This paper evaluates the static and fatigue bending strengths of CFRP (carbon fiber reinforced plastic) laminates subjected to hygrothermals. The specimens which had different stacking composition, orthotropic and quasi-isotropic laminated plates, were prepared for this experiment. A steel ball launched by the air gun collides against CFRP laminates to generate impact damages, and the 3-point fatigue bending test is carried out by using the impacted laminates to investigate the influence of hygrothermals on the effect on the residual bending fatigue strength of CFRP laminates.

  • PDF

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적충보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue life of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the 90-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminates. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[{90}_2/0_2]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

Layup Optimization for Composite Laminates with Discrete Ply Angles (이산 섬유 배열각을 이용한 복합재료 적층 평판의 최적 설계)

  • Kim, Tae-Uk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.734-739
    • /
    • 2001
  • In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles is used for optimization of composite laminated plates. To handle discrete ply angles, the branch and bound method is modified. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region, which shows the algorithm can be effectively used for layup optimization of composite laminates..

  • PDF

Cure Monitoring of Composite Laminates Using Fiber Optic Sensors (광섬유 센서를 이용한 복합재료 적층판의 성형 모니터링)

  • Gang, Hyeon-Gyu;Gang, Dong-Hun;Park, Hyeong-Jun;Hong, Chang-Seon;Kim, Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.59-66
    • /
    • 2002
  • In this paper, we present the simulataneous monitoring of the strain and temperature during cures f various composite laminates using fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors. Three types of graphite/epoxy composite were used : a undirectional laminate, a symmetric cross-ply laminate, and a fabric laminate. Two FBG/EFPI hybrid sensors were embedded in each laminate at different directions and different locations. We performed the real time monitoring of fabrication strains and temperatures at two points within the composite laminates during cure process in an autoclave. Throuhg these experiments, FBG/EFPI sensors proved to be an efficient choice for smart cure monitoring of composite structures.

Reduction of Free Edge Peeling Stress in Composite Laminates under Bending Load (굽힘하중이 가해지는 복합재 평판 자유단에서의 박리응력 감소 연구)

  • Jung, Seok-Joo;Sung, Myung-Kyun;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.497-502
    • /
    • 2015
  • In this paper, a stress function-based approach was proposed to analyze the reduction of free-edge peeling stress in smart composite laminates using piezoelectric actuator under bending load. Electro-mechanically coupled governing equation was obtained by complimentary virtual work principle. The stress state was solved by the generalized eigenvalue procedure. The free-edge peeling stress of smart composite laminates was reduced by the piezoelectric actuation. The reduction rate of peeling stress in cross-ply composite laminate is larger than that in angle ply composite laminate.

On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions

  • Khodjet-Kesba, M.;Benkhedda, A.;Adda Bedia, E.A.;Boukert, B.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.165-173
    • /
    • 2018
  • A simple predicted model using a modified Shear-lag method was used to represent the moisture absorption effect on the stiffness degradation for $[0/90]_{2s}$ composite laminates with transverse cracks and under flexural loading. Good agreement is obtained by comparing the prediction model and experimental data published by Smith and Ogin (2000). The material properties of the composite are affected by the variation of temperature and moisture absorption. The transient and non-uniform moisture concentration distribution give rise to the transient elastic moduli of cracked composite laminates. The hygrothermal effect is taken into account to assess the changes in the normalised axial and flexural modulus due to transverse crack. The obtained results represent well the dependence of the stiffness properties degradation on the cracks density, moisture absorption and operational temperature. The composite laminate with transverse crack loaded in axial tension is more affected by the hygrothermal condition than the one under flexural loading. Through this theoretical study, we hope to contribute to the understanding of the moisture absorption on the composite materials with matrix cracking.

Impact Properties of CFRP Laminates with Initial Fiber Failures (강화재파단이 있는 복합재료의 저속 충격특성)

  • Park, Joong-Gwun;Kang, Chang-Kyu;Kim, Chul;Kim, Tae-Woo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.67-70
    • /
    • 2005
  • The carbon fiber reinforced/epoxy laminated composites were fabricated with initial fiber failures within the unidirectional fiber pre-pregnated ply. The fiber failures were made intentionally either parallel to and/or perpendicular to the unidirectional fibers within the ply. The pre-made clear-cut cracks were found to be healed partially after laminating process. The laminates were impacted with or without initial fiber failures within the laminates. The force versus deflection curves were compared. The partially healed laminates showed the reduced laminate stiffness as compared to those without any intentional fiber failures. The impact curves were compared with size and the location of the initial failures varied.

  • PDF

A Study of Composite Laminates Containing a Central Hole (비균일 응력을 받고있는 중앙에 구멍이 있는 복합재 적층의 분석)

  • Kim, Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.212-216
    • /
    • 2007
  • Predicting microcracking properties of the composite laminates in nonuniform stress conditions was the subject in this paper. The uniform stress field meant the stresses were independent of the width direction. The material was the 954-2A/IM7 laminates containing a central hole. Microcracks initiated at the edge of the hole and propagated into the laminate. Because the tensile stress concentration decreased with distance, the microcracks were arrested before the edge of the laminate. Because carbon fiber composites were opaque, a x-ray method was used to detect the length of the propagating microcracks. The microcracking at the near edge of the hole could be reasonably predicted by considering the local laminate stresses and the microcracking toughness measured in unnotched laminates. However, the date away from the hole did not agree with the predictions. The local microcrack density was always much higher than that predicted by the local laminate stress.

  • PDF